![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ffthres2c | Structured version Visualization version GIF version |
Description: Condition for a fully faithful functor to also be a fully faithful functor into the restriction. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
ffthres2c.a | ⊢ 𝐴 = (Base‘𝐶) |
ffthres2c.e | ⊢ 𝐸 = (𝐷 ↾s 𝑆) |
ffthres2c.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
ffthres2c.r | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
ffthres2c.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
Ref | Expression |
---|---|
ffthres2c | ⊢ (𝜑 → (𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺 ↔ 𝐹((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸))𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffthres2c.a | . . . 4 ⊢ 𝐴 = (Base‘𝐶) | |
2 | ffthres2c.e | . . . 4 ⊢ 𝐸 = (𝐷 ↾s 𝑆) | |
3 | ffthres2c.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
4 | ffthres2c.r | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
5 | ffthres2c.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
6 | 1, 2, 3, 4, 5 | fullres2c 18008 | . . 3 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ 𝐹(𝐶 Full 𝐸)𝐺)) |
7 | 1, 2, 3, 4, 5 | fthres2c 18000 | . . 3 ⊢ (𝜑 → (𝐹(𝐶 Faith 𝐷)𝐺 ↔ 𝐹(𝐶 Faith 𝐸)𝐺)) |
8 | 6, 7 | anbi12d 631 | . 2 ⊢ (𝜑 → ((𝐹(𝐶 Full 𝐷)𝐺 ∧ 𝐹(𝐶 Faith 𝐷)𝐺) ↔ (𝐹(𝐶 Full 𝐸)𝐺 ∧ 𝐹(𝐶 Faith 𝐸)𝐺))) |
9 | brin 5218 | . 2 ⊢ (𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺 ↔ (𝐹(𝐶 Full 𝐷)𝐺 ∧ 𝐹(𝐶 Faith 𝐷)𝐺)) | |
10 | brin 5218 | . 2 ⊢ (𝐹((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸))𝐺 ↔ (𝐹(𝐶 Full 𝐸)𝐺 ∧ 𝐹(𝐶 Faith 𝐸)𝐺)) | |
11 | 8, 9, 10 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺 ↔ 𝐹((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸))𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 class class class wbr 5166 ⟶wf 6571 ‘cfv 6575 (class class class)co 7450 Basecbs 17260 ↾s cress 17289 Catccat 17724 Full cful 17971 Faith cfth 17972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-er 8765 df-map 8888 df-pm 8889 df-ixp 8958 df-en 9006 df-dom 9007 df-sdom 9008 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-2 12358 df-3 12359 df-4 12360 df-5 12361 df-6 12362 df-7 12363 df-8 12364 df-9 12365 df-n0 12556 df-z 12642 df-dec 12761 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-hom 17337 df-cco 17338 df-cat 17728 df-cid 17729 df-homf 17730 df-comf 17731 df-ssc 17873 df-resc 17874 df-subc 17875 df-func 17924 df-full 17973 df-fth 17974 |
This theorem is referenced by: yoniso 18357 |
Copyright terms: Public domain | W3C validator |