| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isstruct | Structured version Visualization version GIF version | ||
| Description: The property of being a structure with components in 𝑀...𝑁. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| Ref | Expression |
|---|---|
| isstruct | ⊢ (𝐹 Struct 〈𝑀, 𝑁〉 ↔ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isstruct2 17168 | . 2 ⊢ (𝐹 Struct 〈𝑀, 𝑁〉 ↔ (〈𝑀, 𝑁〉 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘〈𝑀, 𝑁〉))) | |
| 2 | df-3an 1088 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ↔ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑀 ≤ 𝑁)) | |
| 3 | brinxp2 5743 | . . . 4 ⊢ (𝑀( ≤ ∩ (ℕ × ℕ))𝑁 ↔ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑀 ≤ 𝑁)) | |
| 4 | df-br 5124 | . . . 4 ⊢ (𝑀( ≤ ∩ (ℕ × ℕ))𝑁 ↔ 〈𝑀, 𝑁〉 ∈ ( ≤ ∩ (ℕ × ℕ))) | |
| 5 | 2, 3, 4 | 3bitr2i 299 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ↔ 〈𝑀, 𝑁〉 ∈ ( ≤ ∩ (ℕ × ℕ))) |
| 6 | biid 261 | . . 3 ⊢ (Fun (𝐹 ∖ {∅}) ↔ Fun (𝐹 ∖ {∅})) | |
| 7 | df-ov 7416 | . . . 4 ⊢ (𝑀...𝑁) = (...‘〈𝑀, 𝑁〉) | |
| 8 | 7 | sseq2i 3993 | . . 3 ⊢ (dom 𝐹 ⊆ (𝑀...𝑁) ↔ dom 𝐹 ⊆ (...‘〈𝑀, 𝑁〉)) |
| 9 | 5, 6, 8 | 3anbi123i 1155 | . 2 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁)) ↔ (〈𝑀, 𝑁〉 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘〈𝑀, 𝑁〉))) |
| 10 | 1, 9 | bitr4i 278 | 1 ⊢ (𝐹 Struct 〈𝑀, 𝑁〉 ↔ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 ∖ cdif 3928 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 {csn 4606 〈cop 4612 class class class wbr 5123 × cxp 5663 dom cdm 5665 Fun wfun 6535 ‘cfv 6541 (class class class)co 7413 ≤ cle 11278 ℕcn 12248 ...cfz 13529 Struct cstr 17165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-struct 17166 |
| This theorem is referenced by: structfn 17175 strleun 17176 strle1 17177 setsstruct 17195 |
| Copyright terms: Public domain | W3C validator |