MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomnumr Structured version   Visualization version   GIF version

Theorem wdomnumr 10104
Description: Weak dominance agrees with normal for numerable right sets. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
wdomnumr (𝐵 ∈ dom card → (𝐴* 𝐵𝐴𝐵))

Proof of Theorem wdomnumr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 brwdom 9607 . . 3 (𝐵 ∈ dom card → (𝐴* 𝐵 ↔ (𝐴 = ∅ ∨ ∃𝑥 𝑥:𝐵onto𝐴)))
2 0domg 9140 . . . . 5 (𝐵 ∈ dom card → ∅ ≼ 𝐵)
3 breq1 5146 . . . . 5 (𝐴 = ∅ → (𝐴𝐵 ↔ ∅ ≼ 𝐵))
42, 3syl5ibrcom 247 . . . 4 (𝐵 ∈ dom card → (𝐴 = ∅ → 𝐴𝐵))
5 fodomnum 10097 . . . . 5 (𝐵 ∈ dom card → (𝑥:𝐵onto𝐴𝐴𝐵))
65exlimdv 1933 . . . 4 (𝐵 ∈ dom card → (∃𝑥 𝑥:𝐵onto𝐴𝐴𝐵))
74, 6jaod 860 . . 3 (𝐵 ∈ dom card → ((𝐴 = ∅ ∨ ∃𝑥 𝑥:𝐵onto𝐴) → 𝐴𝐵))
81, 7sylbid 240 . 2 (𝐵 ∈ dom card → (𝐴* 𝐵𝐴𝐵))
9 domwdom 9614 . 2 (𝐴𝐵𝐴* 𝐵)
108, 9impbid1 225 1 (𝐵 ∈ dom card → (𝐴* 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 848   = wceq 1540  wex 1779  wcel 2108  c0 4333   class class class wbr 5143  dom cdm 5685  ontowfo 6559  cdom 8983  * cwdom 9604  cardccrd 9975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-wdom 9605  df-card 9979  df-acn 9982
This theorem is referenced by:  wdomac  10567  ttac  43048  isnumbasgrplem2  43116
  Copyright terms: Public domain W3C validator