![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wdomnumr | Structured version Visualization version GIF version |
Description: Weak dominance agrees with normal for numerable right sets. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
Ref | Expression |
---|---|
wdomnumr | ⊢ (𝐵 ∈ dom card → (𝐴 ≼* 𝐵 ↔ 𝐴 ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brwdom 8715 | . . 3 ⊢ (𝐵 ∈ dom card → (𝐴 ≼* 𝐵 ↔ (𝐴 = ∅ ∨ ∃𝑥 𝑥:𝐵–onto→𝐴))) | |
2 | 0domg 8330 | . . . . 5 ⊢ (𝐵 ∈ dom card → ∅ ≼ 𝐵) | |
3 | breq1 4847 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 ≼ 𝐵 ↔ ∅ ≼ 𝐵)) | |
4 | 2, 3 | syl5ibrcom 239 | . . . 4 ⊢ (𝐵 ∈ dom card → (𝐴 = ∅ → 𝐴 ≼ 𝐵)) |
5 | fodomnum 9167 | . . . . 5 ⊢ (𝐵 ∈ dom card → (𝑥:𝐵–onto→𝐴 → 𝐴 ≼ 𝐵)) | |
6 | 5 | exlimdv 2029 | . . . 4 ⊢ (𝐵 ∈ dom card → (∃𝑥 𝑥:𝐵–onto→𝐴 → 𝐴 ≼ 𝐵)) |
7 | 4, 6 | jaod 886 | . . 3 ⊢ (𝐵 ∈ dom card → ((𝐴 = ∅ ∨ ∃𝑥 𝑥:𝐵–onto→𝐴) → 𝐴 ≼ 𝐵)) |
8 | 1, 7 | sylbid 232 | . 2 ⊢ (𝐵 ∈ dom card → (𝐴 ≼* 𝐵 → 𝐴 ≼ 𝐵)) |
9 | domwdom 8722 | . 2 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ≼* 𝐵) | |
10 | 8, 9 | impbid1 217 | 1 ⊢ (𝐵 ∈ dom card → (𝐴 ≼* 𝐵 ↔ 𝐴 ≼ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∨ wo 874 = wceq 1653 ∃wex 1875 ∈ wcel 2157 ∅c0 4116 class class class wbr 4844 dom cdm 5313 –onto→wfo 6100 ≼ cdom 8194 ≼* cwdom 8705 cardccrd 9048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-se 5273 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-isom 6111 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-1st 7402 df-2nd 7403 df-wrecs 7646 df-recs 7708 df-er 7983 df-map 8098 df-en 8197 df-dom 8198 df-sdom 8199 df-wdom 8707 df-card 9052 df-acn 9055 |
This theorem is referenced by: wdomac 9638 ttac 38383 isnumbasgrplem2 38454 |
Copyright terms: Public domain | W3C validator |