![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wdomnumr | Structured version Visualization version GIF version |
Description: Weak dominance agrees with normal for numerable right sets. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
Ref | Expression |
---|---|
wdomnumr | ⊢ (𝐵 ∈ dom card → (𝐴 ≼* 𝐵 ↔ 𝐴 ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brwdom 9557 | . . 3 ⊢ (𝐵 ∈ dom card → (𝐴 ≼* 𝐵 ↔ (𝐴 = ∅ ∨ ∃𝑥 𝑥:𝐵–onto→𝐴))) | |
2 | 0domg 9095 | . . . . 5 ⊢ (𝐵 ∈ dom card → ∅ ≼ 𝐵) | |
3 | breq1 5141 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 ≼ 𝐵 ↔ ∅ ≼ 𝐵)) | |
4 | 2, 3 | syl5ibrcom 246 | . . . 4 ⊢ (𝐵 ∈ dom card → (𝐴 = ∅ → 𝐴 ≼ 𝐵)) |
5 | fodomnum 10047 | . . . . 5 ⊢ (𝐵 ∈ dom card → (𝑥:𝐵–onto→𝐴 → 𝐴 ≼ 𝐵)) | |
6 | 5 | exlimdv 1928 | . . . 4 ⊢ (𝐵 ∈ dom card → (∃𝑥 𝑥:𝐵–onto→𝐴 → 𝐴 ≼ 𝐵)) |
7 | 4, 6 | jaod 856 | . . 3 ⊢ (𝐵 ∈ dom card → ((𝐴 = ∅ ∨ ∃𝑥 𝑥:𝐵–onto→𝐴) → 𝐴 ≼ 𝐵)) |
8 | 1, 7 | sylbid 239 | . 2 ⊢ (𝐵 ∈ dom card → (𝐴 ≼* 𝐵 → 𝐴 ≼ 𝐵)) |
9 | domwdom 9564 | . 2 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ≼* 𝐵) | |
10 | 8, 9 | impbid1 224 | 1 ⊢ (𝐵 ∈ dom card → (𝐴 ≼* 𝐵 ↔ 𝐴 ≼ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 844 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ∅c0 4314 class class class wbr 5138 dom cdm 5666 –onto→wfo 6531 ≼ cdom 8932 ≼* cwdom 9554 cardccrd 9925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-er 8698 df-map 8817 df-en 8935 df-dom 8936 df-sdom 8937 df-wdom 9555 df-card 9929 df-acn 9932 |
This theorem is referenced by: wdomac 10517 ttac 42230 isnumbasgrplem2 42301 |
Copyright terms: Public domain | W3C validator |