MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomnumr Structured version   Visualization version   GIF version

Theorem wdomnumr 10054
Description: Weak dominance agrees with normal for numerable right sets. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
wdomnumr (𝐵 ∈ dom card → (𝐴* 𝐵𝐴𝐵))

Proof of Theorem wdomnumr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 brwdom 9557 . . 3 (𝐵 ∈ dom card → (𝐴* 𝐵 ↔ (𝐴 = ∅ ∨ ∃𝑥 𝑥:𝐵onto𝐴)))
2 0domg 9095 . . . . 5 (𝐵 ∈ dom card → ∅ ≼ 𝐵)
3 breq1 5141 . . . . 5 (𝐴 = ∅ → (𝐴𝐵 ↔ ∅ ≼ 𝐵))
42, 3syl5ibrcom 246 . . . 4 (𝐵 ∈ dom card → (𝐴 = ∅ → 𝐴𝐵))
5 fodomnum 10047 . . . . 5 (𝐵 ∈ dom card → (𝑥:𝐵onto𝐴𝐴𝐵))
65exlimdv 1928 . . . 4 (𝐵 ∈ dom card → (∃𝑥 𝑥:𝐵onto𝐴𝐴𝐵))
74, 6jaod 856 . . 3 (𝐵 ∈ dom card → ((𝐴 = ∅ ∨ ∃𝑥 𝑥:𝐵onto𝐴) → 𝐴𝐵))
81, 7sylbid 239 . 2 (𝐵 ∈ dom card → (𝐴* 𝐵𝐴𝐵))
9 domwdom 9564 . 2 (𝐴𝐵𝐴* 𝐵)
108, 9impbid1 224 1 (𝐵 ∈ dom card → (𝐴* 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 844   = wceq 1533  wex 1773  wcel 2098  c0 4314   class class class wbr 5138  dom cdm 5666  ontowfo 6531  cdom 8932  * cwdom 9554  cardccrd 9925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-er 8698  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-wdom 9555  df-card 9929  df-acn 9932
This theorem is referenced by:  wdomac  10517  ttac  42230  isnumbasgrplem2  42301
  Copyright terms: Public domain W3C validator