MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomnumr Structured version   Visualization version   GIF version

Theorem wdomnumr 10078
Description: Weak dominance agrees with normal for numerable right sets. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
wdomnumr (𝐵 ∈ dom card → (𝐴* 𝐵𝐴𝐵))

Proof of Theorem wdomnumr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 brwdom 9581 . . 3 (𝐵 ∈ dom card → (𝐴* 𝐵 ↔ (𝐴 = ∅ ∨ ∃𝑥 𝑥:𝐵onto𝐴)))
2 0domg 9114 . . . . 5 (𝐵 ∈ dom card → ∅ ≼ 𝐵)
3 breq1 5122 . . . . 5 (𝐴 = ∅ → (𝐴𝐵 ↔ ∅ ≼ 𝐵))
42, 3syl5ibrcom 247 . . . 4 (𝐵 ∈ dom card → (𝐴 = ∅ → 𝐴𝐵))
5 fodomnum 10071 . . . . 5 (𝐵 ∈ dom card → (𝑥:𝐵onto𝐴𝐴𝐵))
65exlimdv 1933 . . . 4 (𝐵 ∈ dom card → (∃𝑥 𝑥:𝐵onto𝐴𝐴𝐵))
74, 6jaod 859 . . 3 (𝐵 ∈ dom card → ((𝐴 = ∅ ∨ ∃𝑥 𝑥:𝐵onto𝐴) → 𝐴𝐵))
81, 7sylbid 240 . 2 (𝐵 ∈ dom card → (𝐴* 𝐵𝐴𝐵))
9 domwdom 9588 . 2 (𝐴𝐵𝐴* 𝐵)
108, 9impbid1 225 1 (𝐵 ∈ dom card → (𝐴* 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1540  wex 1779  wcel 2108  c0 4308   class class class wbr 5119  dom cdm 5654  ontowfo 6529  cdom 8957  * cwdom 9578  cardccrd 9949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-wdom 9579  df-card 9953  df-acn 9956
This theorem is referenced by:  wdomac  10541  ttac  43060  isnumbasgrplem2  43128
  Copyright terms: Public domain W3C validator