MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domwdom Structured version   Visualization version   GIF version

Theorem domwdom 9503
Description: Weak dominance is implied by dominance in the usual sense. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
domwdom (𝑋𝑌𝑋* 𝑌)

Proof of Theorem domwdom
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 neqne 2933 . . . . . . 7 𝑋 = ∅ → 𝑋 ≠ ∅)
21adantl 481 . . . . . 6 ((𝑋𝑌 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
3 reldom 8901 . . . . . . . . 9 Rel ≼
43brrelex1i 5687 . . . . . . . 8 (𝑋𝑌𝑋 ∈ V)
5 0sdomg 9047 . . . . . . . 8 (𝑋 ∈ V → (∅ ≺ 𝑋𝑋 ≠ ∅))
64, 5syl 17 . . . . . . 7 (𝑋𝑌 → (∅ ≺ 𝑋𝑋 ≠ ∅))
76adantr 480 . . . . . 6 ((𝑋𝑌 ∧ ¬ 𝑋 = ∅) → (∅ ≺ 𝑋𝑋 ≠ ∅))
82, 7mpbird 257 . . . . 5 ((𝑋𝑌 ∧ ¬ 𝑋 = ∅) → ∅ ≺ 𝑋)
9 simpl 482 . . . . 5 ((𝑋𝑌 ∧ ¬ 𝑋 = ∅) → 𝑋𝑌)
10 fodomr 9069 . . . . 5 ((∅ ≺ 𝑋𝑋𝑌) → ∃𝑦 𝑦:𝑌onto𝑋)
118, 9, 10syl2anc 584 . . . 4 ((𝑋𝑌 ∧ ¬ 𝑋 = ∅) → ∃𝑦 𝑦:𝑌onto𝑋)
1211ex 412 . . 3 (𝑋𝑌 → (¬ 𝑋 = ∅ → ∃𝑦 𝑦:𝑌onto𝑋))
1312orrd 863 . 2 (𝑋𝑌 → (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌onto𝑋))
143brrelex2i 5688 . . 3 (𝑋𝑌𝑌 ∈ V)
15 brwdom 9496 . . 3 (𝑌 ∈ V → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌onto𝑋)))
1614, 15syl 17 . 2 (𝑋𝑌 → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌onto𝑋)))
1713, 16mpbird 257 1 (𝑋𝑌𝑋* 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wne 2925  Vcvv 3444  c0 4292   class class class wbr 5102  ontowfo 6497  cdom 8893  csdm 8894  * cwdom 9493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-en 8896  df-dom 8897  df-sdom 8898  df-wdom 9494
This theorem is referenced by:  wdomen1  9505  wdomen2  9506  wdom2d  9509  wdomima2g  9515  unxpwdom2  9517  unxpwdom  9518  harwdom  9520  wdomfil  9990  wdomnumr  9993  pwdjudom  10144  hsmexlem1  10355  hsmexlem4  10358
  Copyright terms: Public domain W3C validator