| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domwdom | Structured version Visualization version GIF version | ||
| Description: Weak dominance is implied by dominance in the usual sense. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| domwdom | ⊢ (𝑋 ≼ 𝑌 → 𝑋 ≼* 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neqne 2934 | . . . . . . 7 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) | |
| 2 | 1 | adantl 481 | . . . . . 6 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
| 3 | reldom 8927 | . . . . . . . . 9 ⊢ Rel ≼ | |
| 4 | 3 | brrelex1i 5697 | . . . . . . . 8 ⊢ (𝑋 ≼ 𝑌 → 𝑋 ∈ V) |
| 5 | 0sdomg 9076 | . . . . . . . 8 ⊢ (𝑋 ∈ V → (∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅)) | |
| 6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝑋 ≼ 𝑌 → (∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅)) |
| 7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → (∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅)) |
| 8 | 2, 7 | mpbird 257 | . . . . 5 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → ∅ ≺ 𝑋) |
| 9 | simpl 482 | . . . . 5 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → 𝑋 ≼ 𝑌) | |
| 10 | fodomr 9098 | . . . . 5 ⊢ ((∅ ≺ 𝑋 ∧ 𝑋 ≼ 𝑌) → ∃𝑦 𝑦:𝑌–onto→𝑋) | |
| 11 | 8, 9, 10 | syl2anc 584 | . . . 4 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → ∃𝑦 𝑦:𝑌–onto→𝑋) |
| 12 | 11 | ex 412 | . . 3 ⊢ (𝑋 ≼ 𝑌 → (¬ 𝑋 = ∅ → ∃𝑦 𝑦:𝑌–onto→𝑋)) |
| 13 | 12 | orrd 863 | . 2 ⊢ (𝑋 ≼ 𝑌 → (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌–onto→𝑋)) |
| 14 | 3 | brrelex2i 5698 | . . 3 ⊢ (𝑋 ≼ 𝑌 → 𝑌 ∈ V) |
| 15 | brwdom 9527 | . . 3 ⊢ (𝑌 ∈ V → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌–onto→𝑋))) | |
| 16 | 14, 15 | syl 17 | . 2 ⊢ (𝑋 ≼ 𝑌 → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌–onto→𝑋))) |
| 17 | 13, 16 | mpbird 257 | 1 ⊢ (𝑋 ≼ 𝑌 → 𝑋 ≼* 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∅c0 4299 class class class wbr 5110 –onto→wfo 6512 ≼ cdom 8919 ≺ csdm 8920 ≼* cwdom 9524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-en 8922 df-dom 8923 df-sdom 8924 df-wdom 9525 |
| This theorem is referenced by: wdomen1 9536 wdomen2 9537 wdom2d 9540 wdomima2g 9546 unxpwdom2 9548 unxpwdom 9549 harwdom 9551 wdomfil 10021 wdomnumr 10024 pwdjudom 10175 hsmexlem1 10386 hsmexlem4 10389 |
| Copyright terms: Public domain | W3C validator |