Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  domwdom Structured version   Visualization version   GIF version

Theorem domwdom 9037
 Description: Weak dominance is implied by dominance in the usual sense. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
domwdom (𝑋𝑌𝑋* 𝑌)

Proof of Theorem domwdom
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 neqne 3024 . . . . . . 7 𝑋 = ∅ → 𝑋 ≠ ∅)
21adantl 484 . . . . . 6 ((𝑋𝑌 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
3 reldom 8514 . . . . . . . . 9 Rel ≼
43brrelex1i 5607 . . . . . . . 8 (𝑋𝑌𝑋 ∈ V)
5 0sdomg 8645 . . . . . . . 8 (𝑋 ∈ V → (∅ ≺ 𝑋𝑋 ≠ ∅))
64, 5syl 17 . . . . . . 7 (𝑋𝑌 → (∅ ≺ 𝑋𝑋 ≠ ∅))
76adantr 483 . . . . . 6 ((𝑋𝑌 ∧ ¬ 𝑋 = ∅) → (∅ ≺ 𝑋𝑋 ≠ ∅))
82, 7mpbird 259 . . . . 5 ((𝑋𝑌 ∧ ¬ 𝑋 = ∅) → ∅ ≺ 𝑋)
9 simpl 485 . . . . 5 ((𝑋𝑌 ∧ ¬ 𝑋 = ∅) → 𝑋𝑌)
10 fodomr 8667 . . . . 5 ((∅ ≺ 𝑋𝑋𝑌) → ∃𝑦 𝑦:𝑌onto𝑋)
118, 9, 10syl2anc 586 . . . 4 ((𝑋𝑌 ∧ ¬ 𝑋 = ∅) → ∃𝑦 𝑦:𝑌onto𝑋)
1211ex 415 . . 3 (𝑋𝑌 → (¬ 𝑋 = ∅ → ∃𝑦 𝑦:𝑌onto𝑋))
1312orrd 859 . 2 (𝑋𝑌 → (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌onto𝑋))
143brrelex2i 5608 . . 3 (𝑋𝑌𝑌 ∈ V)
15 brwdom 9030 . . 3 (𝑌 ∈ V → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌onto𝑋)))
1614, 15syl 17 . 2 (𝑋𝑌 → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌onto𝑋)))
1713, 16mpbird 259 1 (𝑋𝑌𝑋* 𝑌)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 208   ∧ wa 398   ∨ wo 843   = wceq 1533  ∃wex 1776   ∈ wcel 2110   ≠ wne 3016  Vcvv 3494  ∅c0 4290   class class class wbr 5065  –onto→wfo 6352   ≼ cdom 8506   ≺ csdm 8507   ≼* cwdom 9020 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-wdom 9022 This theorem is referenced by:  wdomen1  9039  wdomen2  9040  wdom2d  9043  wdomima2g  9049  unxpwdom2  9051  unxpwdom  9052  harwdom  9053  wdomfil  9486  wdomnumr  9489  pwdjudom  9637  hsmexlem1  9847  hsmexlem4  9850
 Copyright terms: Public domain W3C validator