Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > domwdom | Structured version Visualization version GIF version |
Description: Weak dominance is implied by dominance in the usual sense. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
domwdom | ⊢ (𝑋 ≼ 𝑌 → 𝑋 ≼* 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neqne 2950 | . . . . . . 7 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) | |
2 | 1 | adantl 481 | . . . . . 6 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
3 | reldom 8697 | . . . . . . . . 9 ⊢ Rel ≼ | |
4 | 3 | brrelex1i 5634 | . . . . . . . 8 ⊢ (𝑋 ≼ 𝑌 → 𝑋 ∈ V) |
5 | 0sdomg 8842 | . . . . . . . 8 ⊢ (𝑋 ∈ V → (∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅)) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝑋 ≼ 𝑌 → (∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅)) |
7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → (∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅)) |
8 | 2, 7 | mpbird 256 | . . . . 5 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → ∅ ≺ 𝑋) |
9 | simpl 482 | . . . . 5 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → 𝑋 ≼ 𝑌) | |
10 | fodomr 8864 | . . . . 5 ⊢ ((∅ ≺ 𝑋 ∧ 𝑋 ≼ 𝑌) → ∃𝑦 𝑦:𝑌–onto→𝑋) | |
11 | 8, 9, 10 | syl2anc 583 | . . . 4 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → ∃𝑦 𝑦:𝑌–onto→𝑋) |
12 | 11 | ex 412 | . . 3 ⊢ (𝑋 ≼ 𝑌 → (¬ 𝑋 = ∅ → ∃𝑦 𝑦:𝑌–onto→𝑋)) |
13 | 12 | orrd 859 | . 2 ⊢ (𝑋 ≼ 𝑌 → (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌–onto→𝑋)) |
14 | 3 | brrelex2i 5635 | . . 3 ⊢ (𝑋 ≼ 𝑌 → 𝑌 ∈ V) |
15 | brwdom 9256 | . . 3 ⊢ (𝑌 ∈ V → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌–onto→𝑋))) | |
16 | 14, 15 | syl 17 | . 2 ⊢ (𝑋 ≼ 𝑌 → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌–onto→𝑋))) |
17 | 13, 16 | mpbird 256 | 1 ⊢ (𝑋 ≼ 𝑌 → 𝑋 ≼* 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∅c0 4253 class class class wbr 5070 –onto→wfo 6416 ≼ cdom 8689 ≺ csdm 8690 ≼* cwdom 9253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-wdom 9254 |
This theorem is referenced by: wdomen1 9265 wdomen2 9266 wdom2d 9269 wdomima2g 9275 unxpwdom2 9277 unxpwdom 9278 harwdom 9280 wdomfil 9748 wdomnumr 9751 pwdjudom 9903 hsmexlem1 10113 hsmexlem4 10116 |
Copyright terms: Public domain | W3C validator |