| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domwdom | Structured version Visualization version GIF version | ||
| Description: Weak dominance is implied by dominance in the usual sense. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| domwdom | ⊢ (𝑋 ≼ 𝑌 → 𝑋 ≼* 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neqne 2940 | . . . . . . 7 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) | |
| 2 | 1 | adantl 481 | . . . . . 6 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
| 3 | reldom 8963 | . . . . . . . . 9 ⊢ Rel ≼ | |
| 4 | 3 | brrelex1i 5710 | . . . . . . . 8 ⊢ (𝑋 ≼ 𝑌 → 𝑋 ∈ V) |
| 5 | 0sdomg 9116 | . . . . . . . 8 ⊢ (𝑋 ∈ V → (∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅)) | |
| 6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝑋 ≼ 𝑌 → (∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅)) |
| 7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → (∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅)) |
| 8 | 2, 7 | mpbird 257 | . . . . 5 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → ∅ ≺ 𝑋) |
| 9 | simpl 482 | . . . . 5 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → 𝑋 ≼ 𝑌) | |
| 10 | fodomr 9140 | . . . . 5 ⊢ ((∅ ≺ 𝑋 ∧ 𝑋 ≼ 𝑌) → ∃𝑦 𝑦:𝑌–onto→𝑋) | |
| 11 | 8, 9, 10 | syl2anc 584 | . . . 4 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → ∃𝑦 𝑦:𝑌–onto→𝑋) |
| 12 | 11 | ex 412 | . . 3 ⊢ (𝑋 ≼ 𝑌 → (¬ 𝑋 = ∅ → ∃𝑦 𝑦:𝑌–onto→𝑋)) |
| 13 | 12 | orrd 863 | . 2 ⊢ (𝑋 ≼ 𝑌 → (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌–onto→𝑋)) |
| 14 | 3 | brrelex2i 5711 | . . 3 ⊢ (𝑋 ≼ 𝑌 → 𝑌 ∈ V) |
| 15 | brwdom 9579 | . . 3 ⊢ (𝑌 ∈ V → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌–onto→𝑋))) | |
| 16 | 14, 15 | syl 17 | . 2 ⊢ (𝑋 ≼ 𝑌 → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌–onto→𝑋))) |
| 17 | 13, 16 | mpbird 257 | 1 ⊢ (𝑋 ≼ 𝑌 → 𝑋 ≼* 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 ∅c0 4308 class class class wbr 5119 –onto→wfo 6528 ≼ cdom 8955 ≺ csdm 8956 ≼* cwdom 9576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-en 8958 df-dom 8959 df-sdom 8960 df-wdom 9577 |
| This theorem is referenced by: wdomen1 9588 wdomen2 9589 wdom2d 9592 wdomima2g 9598 unxpwdom2 9600 unxpwdom 9601 harwdom 9603 wdomfil 10073 wdomnumr 10076 pwdjudom 10227 hsmexlem1 10438 hsmexlem4 10441 |
| Copyright terms: Public domain | W3C validator |