MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domwdom Structured version   Visualization version   GIF version

Theorem domwdom 9568
Description: Weak dominance is implied by dominance in the usual sense. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
domwdom (𝑋𝑌𝑋* 𝑌)

Proof of Theorem domwdom
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 neqne 2948 . . . . . . 7 𝑋 = ∅ → 𝑋 ≠ ∅)
21adantl 482 . . . . . 6 ((𝑋𝑌 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
3 reldom 8944 . . . . . . . . 9 Rel ≼
43brrelex1i 5732 . . . . . . . 8 (𝑋𝑌𝑋 ∈ V)
5 0sdomg 9103 . . . . . . . 8 (𝑋 ∈ V → (∅ ≺ 𝑋𝑋 ≠ ∅))
64, 5syl 17 . . . . . . 7 (𝑋𝑌 → (∅ ≺ 𝑋𝑋 ≠ ∅))
76adantr 481 . . . . . 6 ((𝑋𝑌 ∧ ¬ 𝑋 = ∅) → (∅ ≺ 𝑋𝑋 ≠ ∅))
82, 7mpbird 256 . . . . 5 ((𝑋𝑌 ∧ ¬ 𝑋 = ∅) → ∅ ≺ 𝑋)
9 simpl 483 . . . . 5 ((𝑋𝑌 ∧ ¬ 𝑋 = ∅) → 𝑋𝑌)
10 fodomr 9127 . . . . 5 ((∅ ≺ 𝑋𝑋𝑌) → ∃𝑦 𝑦:𝑌onto𝑋)
118, 9, 10syl2anc 584 . . . 4 ((𝑋𝑌 ∧ ¬ 𝑋 = ∅) → ∃𝑦 𝑦:𝑌onto𝑋)
1211ex 413 . . 3 (𝑋𝑌 → (¬ 𝑋 = ∅ → ∃𝑦 𝑦:𝑌onto𝑋))
1312orrd 861 . 2 (𝑋𝑌 → (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌onto𝑋))
143brrelex2i 5733 . . 3 (𝑋𝑌𝑌 ∈ V)
15 brwdom 9561 . . 3 (𝑌 ∈ V → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌onto𝑋)))
1614, 15syl 17 . 2 (𝑋𝑌 → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌onto𝑋)))
1713, 16mpbird 256 1 (𝑋𝑌𝑋* 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wex 1781  wcel 2106  wne 2940  Vcvv 3474  c0 4322   class class class wbr 5148  ontowfo 6541  cdom 8936  csdm 8937  * cwdom 9558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-en 8939  df-dom 8940  df-sdom 8941  df-wdom 9559
This theorem is referenced by:  wdomen1  9570  wdomen2  9571  wdom2d  9574  wdomima2g  9580  unxpwdom2  9582  unxpwdom  9583  harwdom  9585  wdomfil  10055  wdomnumr  10058  pwdjudom  10210  hsmexlem1  10420  hsmexlem4  10423
  Copyright terms: Public domain W3C validator