Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > domwdom | Structured version Visualization version GIF version |
Description: Weak dominance is implied by dominance in the usual sense. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
domwdom | ⊢ (𝑋 ≼ 𝑌 → 𝑋 ≼* 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neqne 2942 | . . . . . . 7 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) | |
2 | 1 | adantl 485 | . . . . . 6 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
3 | reldom 8561 | . . . . . . . . 9 ⊢ Rel ≼ | |
4 | 3 | brrelex1i 5579 | . . . . . . . 8 ⊢ (𝑋 ≼ 𝑌 → 𝑋 ∈ V) |
5 | 0sdomg 8696 | . . . . . . . 8 ⊢ (𝑋 ∈ V → (∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅)) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝑋 ≼ 𝑌 → (∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅)) |
7 | 6 | adantr 484 | . . . . . 6 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → (∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅)) |
8 | 2, 7 | mpbird 260 | . . . . 5 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → ∅ ≺ 𝑋) |
9 | simpl 486 | . . . . 5 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → 𝑋 ≼ 𝑌) | |
10 | fodomr 8718 | . . . . 5 ⊢ ((∅ ≺ 𝑋 ∧ 𝑋 ≼ 𝑌) → ∃𝑦 𝑦:𝑌–onto→𝑋) | |
11 | 8, 9, 10 | syl2anc 587 | . . . 4 ⊢ ((𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅) → ∃𝑦 𝑦:𝑌–onto→𝑋) |
12 | 11 | ex 416 | . . 3 ⊢ (𝑋 ≼ 𝑌 → (¬ 𝑋 = ∅ → ∃𝑦 𝑦:𝑌–onto→𝑋)) |
13 | 12 | orrd 862 | . 2 ⊢ (𝑋 ≼ 𝑌 → (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌–onto→𝑋)) |
14 | 3 | brrelex2i 5580 | . . 3 ⊢ (𝑋 ≼ 𝑌 → 𝑌 ∈ V) |
15 | brwdom 9104 | . . 3 ⊢ (𝑌 ∈ V → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌–onto→𝑋))) | |
16 | 14, 15 | syl 17 | . 2 ⊢ (𝑋 ≼ 𝑌 → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌–onto→𝑋))) |
17 | 13, 16 | mpbird 260 | 1 ⊢ (𝑋 ≼ 𝑌 → 𝑋 ≼* 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 846 = wceq 1542 ∃wex 1786 ∈ wcel 2114 ≠ wne 2934 Vcvv 3398 ∅c0 4211 class class class wbr 5030 –onto→wfo 6337 ≼ cdom 8553 ≺ csdm 8554 ≼* cwdom 9101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-wdom 9102 |
This theorem is referenced by: wdomen1 9113 wdomen2 9114 wdom2d 9117 wdomima2g 9123 unxpwdom2 9125 unxpwdom 9126 harwdom 9128 wdomfil 9561 wdomnumr 9564 pwdjudom 9716 hsmexlem1 9926 hsmexlem4 9929 |
Copyright terms: Public domain | W3C validator |