MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domwdom Structured version   Visualization version   GIF version

Theorem domwdom 9111
Description: Weak dominance is implied by dominance in the usual sense. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
domwdom (𝑋𝑌𝑋* 𝑌)

Proof of Theorem domwdom
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 neqne 2942 . . . . . . 7 𝑋 = ∅ → 𝑋 ≠ ∅)
21adantl 485 . . . . . 6 ((𝑋𝑌 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
3 reldom 8561 . . . . . . . . 9 Rel ≼
43brrelex1i 5579 . . . . . . . 8 (𝑋𝑌𝑋 ∈ V)
5 0sdomg 8696 . . . . . . . 8 (𝑋 ∈ V → (∅ ≺ 𝑋𝑋 ≠ ∅))
64, 5syl 17 . . . . . . 7 (𝑋𝑌 → (∅ ≺ 𝑋𝑋 ≠ ∅))
76adantr 484 . . . . . 6 ((𝑋𝑌 ∧ ¬ 𝑋 = ∅) → (∅ ≺ 𝑋𝑋 ≠ ∅))
82, 7mpbird 260 . . . . 5 ((𝑋𝑌 ∧ ¬ 𝑋 = ∅) → ∅ ≺ 𝑋)
9 simpl 486 . . . . 5 ((𝑋𝑌 ∧ ¬ 𝑋 = ∅) → 𝑋𝑌)
10 fodomr 8718 . . . . 5 ((∅ ≺ 𝑋𝑋𝑌) → ∃𝑦 𝑦:𝑌onto𝑋)
118, 9, 10syl2anc 587 . . . 4 ((𝑋𝑌 ∧ ¬ 𝑋 = ∅) → ∃𝑦 𝑦:𝑌onto𝑋)
1211ex 416 . . 3 (𝑋𝑌 → (¬ 𝑋 = ∅ → ∃𝑦 𝑦:𝑌onto𝑋))
1312orrd 862 . 2 (𝑋𝑌 → (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌onto𝑋))
143brrelex2i 5580 . . 3 (𝑋𝑌𝑌 ∈ V)
15 brwdom 9104 . . 3 (𝑌 ∈ V → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌onto𝑋)))
1614, 15syl 17 . 2 (𝑋𝑌 → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑦 𝑦:𝑌onto𝑋)))
1713, 16mpbird 260 1 (𝑋𝑌𝑋* 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 846   = wceq 1542  wex 1786  wcel 2114  wne 2934  Vcvv 3398  c0 4211   class class class wbr 5030  ontowfo 6337  cdom 8553  csdm 8554  * cwdom 9101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-wdom 9102
This theorem is referenced by:  wdomen1  9113  wdomen2  9114  wdom2d  9117  wdomima2g  9123  unxpwdom2  9125  unxpwdom  9126  harwdom  9128  wdomfil  9561  wdomnumr  9564  pwdjudom  9716  hsmexlem1  9926  hsmexlem4  9929
  Copyright terms: Public domain W3C validator