![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mirln | Structured version Visualization version GIF version |
Description: If two points are on the same line, so is the mirror point of one through the other. (Contributed by Thierry Arnoux, 21-Dec-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirln.m | ⊢ 𝑀 = (𝑆‘𝐴) |
mirln.1 | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
mirln.a | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
mirln.b | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
Ref | Expression |
---|---|
mirln | ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
2 | 1 | fveq2d 6450 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝑀‘𝐴) = (𝑀‘𝐵)) |
3 | mirval.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
4 | mirval.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
5 | mirval.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | mirval.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
7 | mirval.s | . . . . 5 ⊢ 𝑆 = (pInvG‘𝐺) | |
8 | mirval.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
9 | 8 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐺 ∈ TarskiG) |
10 | mirln.1 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
11 | mirln.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
12 | 3, 6, 5, 8, 10, 11 | tglnpt 25900 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
13 | 12 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 ∈ 𝑃) |
14 | mirln.m | . . . . 5 ⊢ 𝑀 = (𝑆‘𝐴) | |
15 | 3, 4, 5, 6, 7, 9, 13, 14 | mircinv 26019 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝑀‘𝐴) = 𝐴) |
16 | 2, 15 | eqtr3d 2816 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝑀‘𝐵) = 𝐴) |
17 | 11 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 ∈ 𝐷) |
18 | 16, 17 | eqeltrd 2859 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝑀‘𝐵) ∈ 𝐷) |
19 | 8 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐺 ∈ TarskiG) |
20 | 12 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝑃) |
21 | mirln.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
22 | 3, 6, 5, 8, 10, 21 | tglnpt 25900 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
23 | 22 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝑃) |
24 | 3, 4, 5, 6, 7, 19, 20, 14, 23 | mircl 26012 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (𝑀‘𝐵) ∈ 𝑃) |
25 | simpr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐴 ≠ 𝐵) | |
26 | 3, 4, 5, 6, 7, 8, 12, 14, 22 | mirbtwn 26009 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)) |
27 | 26 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)) |
28 | 3, 5, 6, 19, 20, 23, 24, 25, 27 | btwnlng2 25971 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (𝑀‘𝐵) ∈ (𝐴𝐿𝐵)) |
29 | 10 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐷 ∈ ran 𝐿) |
30 | 11 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝐷) |
31 | 21 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝐷) |
32 | 3, 5, 6, 19, 20, 23, 25, 25, 29, 30, 31 | tglinethru 25987 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐷 = (𝐴𝐿𝐵)) |
33 | 28, 32 | eleqtrrd 2862 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (𝑀‘𝐵) ∈ 𝐷) |
34 | 18, 33 | pm2.61dane 3057 | 1 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 ran crn 5356 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 distcds 16347 TarskiGcstrkg 25781 Itvcitv 25787 LineGclng 25788 pInvGcmir 26003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-pm 8143 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-card 9098 df-cda 9325 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-xnn0 11715 df-z 11729 df-uz 11993 df-fz 12644 df-fzo 12785 df-hash 13436 df-word 13600 df-concat 13661 df-s1 13686 df-s2 13999 df-s3 14000 df-trkgc 25799 df-trkgb 25800 df-trkgcb 25801 df-trkg 25804 df-cgrg 25862 df-mir 26004 |
This theorem is referenced by: opphllem2 26096 opphllem4 26098 colhp 26118 |
Copyright terms: Public domain | W3C validator |