MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirln Structured version   Visualization version   GIF version

Theorem mirln 26459
Description: If two points are on the same line, so is the mirror point of one through the other. (Contributed by Thierry Arnoux, 21-Dec-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirln.m 𝑀 = (𝑆𝐴)
mirln.1 (𝜑𝐷 ∈ ran 𝐿)
mirln.a (𝜑𝐴𝐷)
mirln.b (𝜑𝐵𝐷)
Assertion
Ref Expression
mirln (𝜑 → (𝑀𝐵) ∈ 𝐷)

Proof of Theorem mirln
StepHypRef Expression
1 simpr 488 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
21fveq2d 6655 . . . 4 ((𝜑𝐴 = 𝐵) → (𝑀𝐴) = (𝑀𝐵))
3 mirval.p . . . . 5 𝑃 = (Base‘𝐺)
4 mirval.d . . . . 5 = (dist‘𝐺)
5 mirval.i . . . . 5 𝐼 = (Itv‘𝐺)
6 mirval.l . . . . 5 𝐿 = (LineG‘𝐺)
7 mirval.s . . . . 5 𝑆 = (pInvG‘𝐺)
8 mirval.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
98adantr 484 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ TarskiG)
10 mirln.1 . . . . . . 7 (𝜑𝐷 ∈ ran 𝐿)
11 mirln.a . . . . . . 7 (𝜑𝐴𝐷)
123, 6, 5, 8, 10, 11tglnpt 26332 . . . . . 6 (𝜑𝐴𝑃)
1312adantr 484 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐴𝑃)
14 mirln.m . . . . 5 𝑀 = (𝑆𝐴)
153, 4, 5, 6, 7, 9, 13, 14mircinv 26451 . . . 4 ((𝜑𝐴 = 𝐵) → (𝑀𝐴) = 𝐴)
162, 15eqtr3d 2861 . . 3 ((𝜑𝐴 = 𝐵) → (𝑀𝐵) = 𝐴)
1711adantr 484 . . 3 ((𝜑𝐴 = 𝐵) → 𝐴𝐷)
1816, 17eqeltrd 2916 . 2 ((𝜑𝐴 = 𝐵) → (𝑀𝐵) ∈ 𝐷)
198adantr 484 . . . 4 ((𝜑𝐴𝐵) → 𝐺 ∈ TarskiG)
2012adantr 484 . . . 4 ((𝜑𝐴𝐵) → 𝐴𝑃)
21 mirln.b . . . . . 6 (𝜑𝐵𝐷)
223, 6, 5, 8, 10, 21tglnpt 26332 . . . . 5 (𝜑𝐵𝑃)
2322adantr 484 . . . 4 ((𝜑𝐴𝐵) → 𝐵𝑃)
243, 4, 5, 6, 7, 19, 20, 14, 23mircl 26444 . . . 4 ((𝜑𝐴𝐵) → (𝑀𝐵) ∈ 𝑃)
25 simpr 488 . . . 4 ((𝜑𝐴𝐵) → 𝐴𝐵)
263, 4, 5, 6, 7, 8, 12, 14, 22mirbtwn 26441 . . . . 5 (𝜑𝐴 ∈ ((𝑀𝐵)𝐼𝐵))
2726adantr 484 . . . 4 ((𝜑𝐴𝐵) → 𝐴 ∈ ((𝑀𝐵)𝐼𝐵))
283, 5, 6, 19, 20, 23, 24, 25, 27btwnlng2 26403 . . 3 ((𝜑𝐴𝐵) → (𝑀𝐵) ∈ (𝐴𝐿𝐵))
2910adantr 484 . . . 4 ((𝜑𝐴𝐵) → 𝐷 ∈ ran 𝐿)
3011adantr 484 . . . 4 ((𝜑𝐴𝐵) → 𝐴𝐷)
3121adantr 484 . . . 4 ((𝜑𝐴𝐵) → 𝐵𝐷)
323, 5, 6, 19, 20, 23, 25, 25, 29, 30, 31tglinethru 26419 . . 3 ((𝜑𝐴𝐵) → 𝐷 = (𝐴𝐿𝐵))
3328, 32eleqtrrd 2919 . 2 ((𝜑𝐴𝐵) → (𝑀𝐵) ∈ 𝐷)
3418, 33pm2.61dane 3100 1 (𝜑 → (𝑀𝐵) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wne 3013  ran crn 5537  cfv 6336  (class class class)co 7138  Basecbs 16472  distcds 16563  TarskiGcstrkg 26213  Itvcitv 26219  LineGclng 26220  pInvGcmir 26435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-nn 11624  df-2 11686  df-3 11687  df-n0 11884  df-xnn0 11954  df-z 11968  df-uz 12230  df-fz 12884  df-fzo 13027  df-hash 13685  df-word 13856  df-concat 13912  df-s1 13939  df-s2 14199  df-s3 14200  df-trkgc 26231  df-trkgb 26232  df-trkgcb 26233  df-trkg 26236  df-cgrg 26294  df-mir 26436
This theorem is referenced by:  opphllem2  26531  opphllem4  26533  colhp  26553
  Copyright terms: Public domain W3C validator