![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk19u1 | Structured version Visualization version GIF version |
Description: cdlemk19 40866 with simpler hypotheses. TODO: Clean all this up. (Contributed by NM, 31-Jul-2013.) |
Ref | Expression |
---|---|
cdlemk5.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemk5.l | ⊢ ≤ = (le‘𝐾) |
cdlemk5.j | ⊢ ∨ = (join‘𝐾) |
cdlemk5.m | ⊢ ∧ = (meet‘𝐾) |
cdlemk5.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemk5.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemk5.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemk5.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemk5.z | ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) |
cdlemk5.y | ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
cdlemk5.x | ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) |
cdlemk5.u | ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋)) |
Ref | Expression |
---|---|
cdlemk19u1 | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁 ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑈‘𝐹)‘𝑃) = (𝑁‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp22 1208 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁 ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐹 ≠ 𝑁) | |
2 | simp21 1207 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁 ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐹 ∈ 𝑇) | |
3 | cdlemk5.x | . . . . 5 ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) | |
4 | cdlemk5.u | . . . . 5 ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋)) | |
5 | 3, 4 | cdlemk40f 40916 | . . . 4 ⊢ ((𝐹 ≠ 𝑁 ∧ 𝐹 ∈ 𝑇) → (𝑈‘𝐹) = ⦋𝐹 / 𝑔⦌𝑋) |
6 | 1, 2, 5 | syl2anc 584 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁 ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑈‘𝐹) = ⦋𝐹 / 𝑔⦌𝑋) |
7 | 6 | fveq1d 6916 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁 ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑈‘𝐹)‘𝑃) = (⦋𝐹 / 𝑔⦌𝑋‘𝑃)) |
8 | simp1l 1198 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁 ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
9 | simp23 1209 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁 ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑁 ∈ 𝑇) | |
10 | simp1r 1199 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁 ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐹) = (𝑅‘𝑁)) | |
11 | cdlemk5.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
12 | cdlemk5.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
13 | cdlemk5.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
14 | cdlemk5.r | . . . . . 6 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
15 | 11, 12, 13, 14 | trlnid 40176 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐹 ≠ 𝑁 ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → 𝐹 ≠ ( I ↾ 𝐵)) |
16 | 8, 2, 9, 1, 10, 15 | syl122anc 1380 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁 ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐹 ≠ ( I ↾ 𝐵)) |
17 | 2, 16, 9 | 3jca 1129 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁 ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇)) |
18 | cdlemk5.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
19 | cdlemk5.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
20 | cdlemk5.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
21 | cdlemk5.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
22 | cdlemk5.z | . . . 4 ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) | |
23 | cdlemk5.y | . . . 4 ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | |
24 | 11, 18, 19, 20, 21, 12, 13, 14, 22, 23, 3 | cdlemk19x 40940 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (⦋𝐹 / 𝑔⦌𝑋‘𝑃) = (𝑁‘𝑃)) |
25 | 17, 24 | syld3an2 1412 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁 ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (⦋𝐹 / 𝑔⦌𝑋‘𝑃) = (𝑁‘𝑃)) |
26 | 7, 25 | eqtrd 2777 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ 𝑁 ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑈‘𝐹)‘𝑃) = (𝑁‘𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ⦋csb 3911 ifcif 4534 class class class wbr 5151 ↦ cmpt 5234 I cid 5586 ◡ccnv 5692 ↾ cres 5695 ∘ ccom 5697 ‘cfv 6569 ℩crio 7394 (class class class)co 7438 Basecbs 17254 lecple 17314 joincjn 18378 meetcmee 18379 Atomscatm 39259 HLchlt 39346 LHypclh 39981 LTrncltrn 40098 trLctrl 40155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-riotaBAD 38949 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-iin 5002 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-undef 8306 df-map 8876 df-proset 18361 df-poset 18380 df-plt 18397 df-lub 18413 df-glb 18414 df-join 18415 df-meet 18416 df-p0 18492 df-p1 18493 df-lat 18499 df-clat 18566 df-oposet 39172 df-ol 39174 df-oml 39175 df-covers 39262 df-ats 39263 df-atl 39294 df-cvlat 39318 df-hlat 39347 df-llines 39495 df-lplanes 39496 df-lvols 39497 df-lines 39498 df-psubsp 39500 df-pmap 39501 df-padd 39793 df-lhyp 39985 df-laut 39986 df-ldil 40101 df-ltrn 40102 df-trl 40156 |
This theorem is referenced by: cdlemk19u 40967 |
Copyright terms: Public domain | W3C validator |