MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remim Structured version   Visualization version   GIF version

Theorem remim 14468
Description: Value of the conjugate of a complex number. The value is the real part minus i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
remim (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))

Proof of Theorem remim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cjval 14453 . 2 (𝐴 ∈ ℂ → (∗‘𝐴) = (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
2 replim 14467 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
32oveq1d 7150 . . . . 5 (𝐴 ∈ ℂ → (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
4 recl 14461 . . . . . . 7 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
54recnd 10658 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
6 ax-icn 10585 . . . . . . 7 i ∈ ℂ
7 imcl 14462 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
87recnd 10658 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
9 mulcl 10610 . . . . . . 7 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
106, 8, 9sylancr 590 . . . . . 6 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
115, 10, 5ppncand 11026 . . . . 5 (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = ((ℜ‘𝐴) + (ℜ‘𝐴)))
123, 11eqtrd 2833 . . . 4 (𝐴 ∈ ℂ → (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = ((ℜ‘𝐴) + (ℜ‘𝐴)))
134, 4readdcld 10659 . . . 4 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (ℜ‘𝐴)) ∈ ℝ)
1412, 13eqeltrd 2890 . . 3 (𝐴 ∈ ℂ → (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ)
155, 10, 10pnncand 11025 . . . . . . 7 (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐴))))
162oveq1d 7150 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
176a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → i ∈ ℂ)
1817, 8, 8adddid 10654 . . . . . . 7 (𝐴 ∈ ℂ → (i · ((ℑ‘𝐴) + (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐴))))
1915, 16, 183eqtr4d 2843 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = (i · ((ℑ‘𝐴) + (ℑ‘𝐴))))
2019oveq2d 7151 . . . . 5 (𝐴 ∈ ℂ → (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) = (i · (i · ((ℑ‘𝐴) + (ℑ‘𝐴)))))
217, 7readdcld 10659 . . . . . . 7 (𝐴 ∈ ℂ → ((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℝ)
2221recnd 10658 . . . . . 6 (𝐴 ∈ ℂ → ((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℂ)
23 mulass 10614 . . . . . 6 ((i ∈ ℂ ∧ i ∈ ℂ ∧ ((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℂ) → ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) = (i · (i · ((ℑ‘𝐴) + (ℑ‘𝐴)))))
246, 6, 22, 23mp3an12i 1462 . . . . 5 (𝐴 ∈ ℂ → ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) = (i · (i · ((ℑ‘𝐴) + (ℑ‘𝐴)))))
2520, 24eqtr4d 2836 . . . 4 (𝐴 ∈ ℂ → (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) = ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))))
26 ixi 11258 . . . . . 6 (i · i) = -1
27 neg1rr 11740 . . . . . 6 -1 ∈ ℝ
2826, 27eqeltri 2886 . . . . 5 (i · i) ∈ ℝ
29 remulcl 10611 . . . . 5 (((i · i) ∈ ℝ ∧ ((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℝ) → ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) ∈ ℝ)
3028, 21, 29sylancr 590 . . . 4 (𝐴 ∈ ℂ → ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) ∈ ℝ)
3125, 30eqeltrd 2890 . . 3 (𝐴 ∈ ℂ → (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ)
325, 10subcld 10986 . . . 4 (𝐴 ∈ ℂ → ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) ∈ ℂ)
33 cju 11621 . . . 4 (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
34 oveq2 7143 . . . . . . 7 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → (𝐴 + 𝑥) = (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
3534eleq1d 2874 . . . . . 6 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → ((𝐴 + 𝑥) ∈ ℝ ↔ (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ))
36 oveq2 7143 . . . . . . . 8 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → (𝐴𝑥) = (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
3736oveq2d 7151 . . . . . . 7 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → (i · (𝐴𝑥)) = (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))))
3837eleq1d 2874 . . . . . 6 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → ((i · (𝐴𝑥)) ∈ ℝ ↔ (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ))
3935, 38anbi12d 633 . . . . 5 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → (((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ ((𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ ∧ (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ)))
4039riota2 7118 . . . 4 ((((ℜ‘𝐴) − (i · (ℑ‘𝐴))) ∈ ℂ ∧ ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) → (((𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ ∧ (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ) ↔ (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
4132, 33, 40syl2anc 587 . . 3 (𝐴 ∈ ℂ → (((𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ ∧ (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ) ↔ (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
4214, 31, 41mpbi2and 711 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
431, 42eqtrd 2833 1 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  ∃!wreu 3108  cfv 6324  crio 7092  (class class class)co 7135  cc 10524  cr 10525  1c1 10527  ici 10528   + caddc 10529   · cmul 10531  cmin 10859  -cneg 10860  ccj 14447  cre 14448  cim 14449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-2 11688  df-cj 14450  df-re 14451  df-im 14452
This theorem is referenced by:  cjreb  14474  recj  14475  remullem  14479  imcj  14483  cjadd  14492  cjneg  14498  imval2  14502  cji  14510  remimd  14549
  Copyright terms: Public domain W3C validator