MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remim Structured version   Visualization version   GIF version

Theorem remim 15136
Description: Value of the conjugate of a complex number. The value is the real part minus i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
remim (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))

Proof of Theorem remim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cjval 15121 . 2 (𝐴 ∈ ℂ → (∗‘𝐴) = (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
2 replim 15135 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
32oveq1d 7420 . . . . 5 (𝐴 ∈ ℂ → (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
4 recl 15129 . . . . . . 7 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
54recnd 11263 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
6 ax-icn 11188 . . . . . . 7 i ∈ ℂ
7 imcl 15130 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
87recnd 11263 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
9 mulcl 11213 . . . . . . 7 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
106, 8, 9sylancr 587 . . . . . 6 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
115, 10, 5ppncand 11634 . . . . 5 (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = ((ℜ‘𝐴) + (ℜ‘𝐴)))
123, 11eqtrd 2770 . . . 4 (𝐴 ∈ ℂ → (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = ((ℜ‘𝐴) + (ℜ‘𝐴)))
134, 4readdcld 11264 . . . 4 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (ℜ‘𝐴)) ∈ ℝ)
1412, 13eqeltrd 2834 . . 3 (𝐴 ∈ ℂ → (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ)
155, 10, 10pnncand 11633 . . . . . . 7 (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐴))))
162oveq1d 7420 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
176a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → i ∈ ℂ)
1817, 8, 8adddid 11259 . . . . . . 7 (𝐴 ∈ ℂ → (i · ((ℑ‘𝐴) + (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐴))))
1915, 16, 183eqtr4d 2780 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = (i · ((ℑ‘𝐴) + (ℑ‘𝐴))))
2019oveq2d 7421 . . . . 5 (𝐴 ∈ ℂ → (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) = (i · (i · ((ℑ‘𝐴) + (ℑ‘𝐴)))))
217, 7readdcld 11264 . . . . . . 7 (𝐴 ∈ ℂ → ((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℝ)
2221recnd 11263 . . . . . 6 (𝐴 ∈ ℂ → ((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℂ)
23 mulass 11217 . . . . . 6 ((i ∈ ℂ ∧ i ∈ ℂ ∧ ((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℂ) → ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) = (i · (i · ((ℑ‘𝐴) + (ℑ‘𝐴)))))
246, 6, 22, 23mp3an12i 1467 . . . . 5 (𝐴 ∈ ℂ → ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) = (i · (i · ((ℑ‘𝐴) + (ℑ‘𝐴)))))
2520, 24eqtr4d 2773 . . . 4 (𝐴 ∈ ℂ → (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) = ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))))
26 ixi 11866 . . . . . 6 (i · i) = -1
27 neg1rr 12355 . . . . . 6 -1 ∈ ℝ
2826, 27eqeltri 2830 . . . . 5 (i · i) ∈ ℝ
29 remulcl 11214 . . . . 5 (((i · i) ∈ ℝ ∧ ((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℝ) → ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) ∈ ℝ)
3028, 21, 29sylancr 587 . . . 4 (𝐴 ∈ ℂ → ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) ∈ ℝ)
3125, 30eqeltrd 2834 . . 3 (𝐴 ∈ ℂ → (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ)
325, 10subcld 11594 . . . 4 (𝐴 ∈ ℂ → ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) ∈ ℂ)
33 cju 12236 . . . 4 (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
34 oveq2 7413 . . . . . . 7 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → (𝐴 + 𝑥) = (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
3534eleq1d 2819 . . . . . 6 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → ((𝐴 + 𝑥) ∈ ℝ ↔ (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ))
36 oveq2 7413 . . . . . . . 8 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → (𝐴𝑥) = (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
3736oveq2d 7421 . . . . . . 7 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → (i · (𝐴𝑥)) = (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))))
3837eleq1d 2819 . . . . . 6 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → ((i · (𝐴𝑥)) ∈ ℝ ↔ (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ))
3935, 38anbi12d 632 . . . . 5 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → (((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ ((𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ ∧ (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ)))
4039riota2 7387 . . . 4 ((((ℜ‘𝐴) − (i · (ℑ‘𝐴))) ∈ ℂ ∧ ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) → (((𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ ∧ (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ) ↔ (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
4132, 33, 40syl2anc 584 . . 3 (𝐴 ∈ ℂ → (((𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ ∧ (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ) ↔ (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
4214, 31, 41mpbi2and 712 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
431, 42eqtrd 2770 1 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  ∃!wreu 3357  cfv 6531  crio 7361  (class class class)co 7405  cc 11127  cr 11128  1c1 11130  ici 11131   + caddc 11132   · cmul 11134  cmin 11466  -cneg 11467  ccj 15115  cre 15116  cim 15117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-cj 15118  df-re 15119  df-im 15120
This theorem is referenced by:  cjreb  15142  recj  15143  remullem  15147  imcj  15151  cjadd  15160  cjneg  15166  imval2  15170  cji  15178  remimd  15217
  Copyright terms: Public domain W3C validator