Step | Hyp | Ref
| Expression |
1 | | cjval 14813 |
. 2
⊢ (𝐴 ∈ ℂ →
(∗‘𝐴) =
(℩𝑥 ∈
ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i
· (𝐴 − 𝑥)) ∈
ℝ))) |
2 | | replim 14827 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i ·
(ℑ‘𝐴)))) |
3 | 2 | oveq1d 7290 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝐴 + ((ℜ‘𝐴) − (i ·
(ℑ‘𝐴)))) =
(((ℜ‘𝐴) + (i
· (ℑ‘𝐴))) + ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) |
4 | | recl 14821 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ →
(ℜ‘𝐴) ∈
ℝ) |
5 | 4 | recnd 11003 |
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(ℜ‘𝐴) ∈
ℂ) |
6 | | ax-icn 10930 |
. . . . . . 7
⊢ i ∈
ℂ |
7 | | imcl 14822 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ →
(ℑ‘𝐴) ∈
ℝ) |
8 | 7 | recnd 11003 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ →
(ℑ‘𝐴) ∈
ℂ) |
9 | | mulcl 10955 |
. . . . . . 7
⊢ ((i
∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i ·
(ℑ‘𝐴)) ∈
ℂ) |
10 | 6, 8, 9 | sylancr 587 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (i
· (ℑ‘𝐴))
∈ ℂ) |
11 | 5, 10, 5 | ppncand 11372 |
. . . . 5
⊢ (𝐴 ∈ ℂ →
(((ℜ‘𝐴) + (i
· (ℑ‘𝐴))) + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = ((ℜ‘𝐴) + (ℜ‘𝐴))) |
12 | 3, 11 | eqtrd 2778 |
. . . 4
⊢ (𝐴 ∈ ℂ → (𝐴 + ((ℜ‘𝐴) − (i ·
(ℑ‘𝐴)))) =
((ℜ‘𝐴) +
(ℜ‘𝐴))) |
13 | 4, 4 | readdcld 11004 |
. . . 4
⊢ (𝐴 ∈ ℂ →
((ℜ‘𝐴) +
(ℜ‘𝐴)) ∈
ℝ) |
14 | 12, 13 | eqeltrd 2839 |
. . 3
⊢ (𝐴 ∈ ℂ → (𝐴 + ((ℜ‘𝐴) − (i ·
(ℑ‘𝐴)))) ∈
ℝ) |
15 | 5, 10, 10 | pnncand 11371 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ →
(((ℜ‘𝐴) + (i
· (ℑ‘𝐴))) − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = ((i ·
(ℑ‘𝐴)) + (i
· (ℑ‘𝐴)))) |
16 | 2 | oveq1d 7290 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (𝐴 − ((ℜ‘𝐴) − (i ·
(ℑ‘𝐴)))) =
(((ℜ‘𝐴) + (i
· (ℑ‘𝐴))) − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) |
17 | 6 | a1i 11 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → i ∈
ℂ) |
18 | 17, 8, 8 | adddid 10999 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (i
· ((ℑ‘𝐴)
+ (ℑ‘𝐴))) = ((i
· (ℑ‘𝐴))
+ (i · (ℑ‘𝐴)))) |
19 | 15, 16, 18 | 3eqtr4d 2788 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (𝐴 − ((ℜ‘𝐴) − (i ·
(ℑ‘𝐴)))) = (i
· ((ℑ‘𝐴)
+ (ℑ‘𝐴)))) |
20 | 19 | oveq2d 7291 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (i
· (𝐴 −
((ℜ‘𝐴) −
(i · (ℑ‘𝐴))))) = (i · (i ·
((ℑ‘𝐴) +
(ℑ‘𝐴))))) |
21 | 7, 7 | readdcld 11004 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ →
((ℑ‘𝐴) +
(ℑ‘𝐴)) ∈
ℝ) |
22 | 21 | recnd 11003 |
. . . . . 6
⊢ (𝐴 ∈ ℂ →
((ℑ‘𝐴) +
(ℑ‘𝐴)) ∈
ℂ) |
23 | | mulass 10959 |
. . . . . 6
⊢ ((i
∈ ℂ ∧ i ∈ ℂ ∧ ((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℂ) → ((i · i)
· ((ℑ‘𝐴)
+ (ℑ‘𝐴))) = (i
· (i · ((ℑ‘𝐴) + (ℑ‘𝐴))))) |
24 | 6, 6, 22, 23 | mp3an12i 1464 |
. . . . 5
⊢ (𝐴 ∈ ℂ → ((i
· i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) = (i · (i ·
((ℑ‘𝐴) +
(ℑ‘𝐴))))) |
25 | 20, 24 | eqtr4d 2781 |
. . . 4
⊢ (𝐴 ∈ ℂ → (i
· (𝐴 −
((ℜ‘𝐴) −
(i · (ℑ‘𝐴))))) = ((i · i) ·
((ℑ‘𝐴) +
(ℑ‘𝐴)))) |
26 | | ixi 11604 |
. . . . . 6
⊢ (i
· i) = -1 |
27 | | neg1rr 12088 |
. . . . . 6
⊢ -1 ∈
ℝ |
28 | 26, 27 | eqeltri 2835 |
. . . . 5
⊢ (i
· i) ∈ ℝ |
29 | | remulcl 10956 |
. . . . 5
⊢ (((i
· i) ∈ ℝ ∧ ((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℝ) → ((i · i)
· ((ℑ‘𝐴)
+ (ℑ‘𝐴)))
∈ ℝ) |
30 | 28, 21, 29 | sylancr 587 |
. . . 4
⊢ (𝐴 ∈ ℂ → ((i
· i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) ∈ ℝ) |
31 | 25, 30 | eqeltrd 2839 |
. . 3
⊢ (𝐴 ∈ ℂ → (i
· (𝐴 −
((ℜ‘𝐴) −
(i · (ℑ‘𝐴))))) ∈ ℝ) |
32 | 5, 10 | subcld 11332 |
. . . 4
⊢ (𝐴 ∈ ℂ →
((ℜ‘𝐴) −
(i · (ℑ‘𝐴))) ∈ ℂ) |
33 | | cju 11969 |
. . . 4
⊢ (𝐴 ∈ ℂ →
∃!𝑥 ∈ ℂ
((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) |
34 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑥 = ((ℜ‘𝐴) − (i ·
(ℑ‘𝐴))) →
(𝐴 + 𝑥) = (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) |
35 | 34 | eleq1d 2823 |
. . . . . 6
⊢ (𝑥 = ((ℜ‘𝐴) − (i ·
(ℑ‘𝐴))) →
((𝐴 + 𝑥) ∈ ℝ ↔ (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈
ℝ)) |
36 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑥 = ((ℜ‘𝐴) − (i ·
(ℑ‘𝐴))) →
(𝐴 − 𝑥) = (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) |
37 | 36 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑥 = ((ℜ‘𝐴) − (i ·
(ℑ‘𝐴))) →
(i · (𝐴 −
𝑥)) = (i · (𝐴 − ((ℜ‘𝐴) − (i ·
(ℑ‘𝐴)))))) |
38 | 37 | eleq1d 2823 |
. . . . . 6
⊢ (𝑥 = ((ℜ‘𝐴) − (i ·
(ℑ‘𝐴))) →
((i · (𝐴 −
𝑥)) ∈ ℝ ↔
(i · (𝐴 −
((ℜ‘𝐴) −
(i · (ℑ‘𝐴))))) ∈ ℝ)) |
39 | 35, 38 | anbi12d 631 |
. . . . 5
⊢ (𝑥 = ((ℜ‘𝐴) − (i ·
(ℑ‘𝐴))) →
(((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ↔ ((𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ ∧ (i
· (𝐴 −
((ℜ‘𝐴) −
(i · (ℑ‘𝐴))))) ∈ ℝ))) |
40 | 39 | riota2 7258 |
. . . 4
⊢
((((ℜ‘𝐴)
− (i · (ℑ‘𝐴))) ∈ ℂ ∧ ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) → (((𝐴 + ((ℜ‘𝐴) − (i ·
(ℑ‘𝐴)))) ∈
ℝ ∧ (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ) ↔
(℩𝑥 ∈
ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i
· (𝐴 − 𝑥)) ∈ ℝ)) =
((ℜ‘𝐴) −
(i · (ℑ‘𝐴))))) |
41 | 32, 33, 40 | syl2anc 584 |
. . 3
⊢ (𝐴 ∈ ℂ → (((𝐴 + ((ℜ‘𝐴) − (i ·
(ℑ‘𝐴)))) ∈
ℝ ∧ (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ) ↔
(℩𝑥 ∈
ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i
· (𝐴 − 𝑥)) ∈ ℝ)) =
((ℜ‘𝐴) −
(i · (ℑ‘𝐴))))) |
42 | 14, 31, 41 | mpbi2and 709 |
. 2
⊢ (𝐴 ∈ ℂ →
(℩𝑥 ∈
ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i
· (𝐴 − 𝑥)) ∈ ℝ)) =
((ℜ‘𝐴) −
(i · (ℑ‘𝐴)))) |
43 | 1, 42 | eqtrd 2778 |
1
⊢ (𝐴 ∈ ℂ →
(∗‘𝐴) =
((ℜ‘𝐴) −
(i · (ℑ‘𝐴)))) |