![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isclintop | Structured version Visualization version GIF version |
Description: The predicate "is a closed (internal binary) operations for a set". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.) |
Ref | Expression |
---|---|
isclintop | ⊢ (𝑀 ∈ 𝑉 → ( ⚬ ∈ ( clIntOp ‘𝑀) ↔ ⚬ :(𝑀 × 𝑀)⟶𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clintopval 42626 | . . 3 ⊢ (𝑀 ∈ 𝑉 → ( clIntOp ‘𝑀) = (𝑀 ↑𝑚 (𝑀 × 𝑀))) | |
2 | 1 | eleq2d 2862 | . 2 ⊢ (𝑀 ∈ 𝑉 → ( ⚬ ∈ ( clIntOp ‘𝑀) ↔ ⚬ ∈ (𝑀 ↑𝑚 (𝑀 × 𝑀)))) |
3 | sqxpexg 7195 | . . 3 ⊢ (𝑀 ∈ 𝑉 → (𝑀 × 𝑀) ∈ V) | |
4 | elmapg 8106 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ (𝑀 × 𝑀) ∈ V) → ( ⚬ ∈ (𝑀 ↑𝑚 (𝑀 × 𝑀)) ↔ ⚬ :(𝑀 × 𝑀)⟶𝑀)) | |
5 | 3, 4 | mpdan 679 | . 2 ⊢ (𝑀 ∈ 𝑉 → ( ⚬ ∈ (𝑀 ↑𝑚 (𝑀 × 𝑀)) ↔ ⚬ :(𝑀 × 𝑀)⟶𝑀)) |
6 | 2, 5 | bitrd 271 | 1 ⊢ (𝑀 ∈ 𝑉 → ( ⚬ ∈ ( clIntOp ‘𝑀) ↔ ⚬ :(𝑀 × 𝑀)⟶𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∈ wcel 2157 Vcvv 3383 × cxp 5308 ⟶wf 6095 ‘cfv 6099 (class class class)co 6876 ↑𝑚 cmap 8093 clIntOp cclintop 42619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-fv 6107 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-map 8095 df-intop 42621 df-clintop 42622 |
This theorem is referenced by: clintop 42630 isassintop 42632 |
Copyright terms: Public domain | W3C validator |