Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isclintop Structured version   Visualization version   GIF version

Theorem isclintop 48195
Description: The predicate "is a closed (internal binary) operations for a set". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.)
Assertion
Ref Expression
isclintop (𝑀𝑉 → ( ∈ ( clIntOp ‘𝑀) ↔ :(𝑀 × 𝑀)⟶𝑀))

Proof of Theorem isclintop
StepHypRef Expression
1 clintopval 48192 . . 3 (𝑀𝑉 → ( clIntOp ‘𝑀) = (𝑀m (𝑀 × 𝑀)))
21eleq2d 2814 . 2 (𝑀𝑉 → ( ∈ ( clIntOp ‘𝑀) ↔ ∈ (𝑀m (𝑀 × 𝑀))))
3 sqxpexg 7731 . . 3 (𝑀𝑉 → (𝑀 × 𝑀) ∈ V)
4 elmapg 8812 . . 3 ((𝑀𝑉 ∧ (𝑀 × 𝑀) ∈ V) → ( ∈ (𝑀m (𝑀 × 𝑀)) ↔ :(𝑀 × 𝑀)⟶𝑀))
53, 4mpdan 687 . 2 (𝑀𝑉 → ( ∈ (𝑀m (𝑀 × 𝑀)) ↔ :(𝑀 × 𝑀)⟶𝑀))
62, 5bitrd 279 1 (𝑀𝑉 → ( ∈ ( clIntOp ‘𝑀) ↔ :(𝑀 × 𝑀)⟶𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  Vcvv 3447   × cxp 5636  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799   clIntOp cclintop 48185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-intop 48187  df-clintop 48188
This theorem is referenced by:  clintop  48196  isassintop  48198
  Copyright terms: Public domain W3C validator