Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isclintop Structured version   Visualization version   GIF version

Theorem isclintop 46607
Description: The predicate "is a closed (internal binary) operations for a set". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.)
Assertion
Ref Expression
isclintop (𝑀𝑉 → ( ∈ ( clIntOp ‘𝑀) ↔ :(𝑀 × 𝑀)⟶𝑀))

Proof of Theorem isclintop
StepHypRef Expression
1 clintopval 46604 . . 3 (𝑀𝑉 → ( clIntOp ‘𝑀) = (𝑀m (𝑀 × 𝑀)))
21eleq2d 2819 . 2 (𝑀𝑉 → ( ∈ ( clIntOp ‘𝑀) ↔ ∈ (𝑀m (𝑀 × 𝑀))))
3 sqxpexg 7741 . . 3 (𝑀𝑉 → (𝑀 × 𝑀) ∈ V)
4 elmapg 8832 . . 3 ((𝑀𝑉 ∧ (𝑀 × 𝑀) ∈ V) → ( ∈ (𝑀m (𝑀 × 𝑀)) ↔ :(𝑀 × 𝑀)⟶𝑀))
53, 4mpdan 685 . 2 (𝑀𝑉 → ( ∈ (𝑀m (𝑀 × 𝑀)) ↔ :(𝑀 × 𝑀)⟶𝑀))
62, 5bitrd 278 1 (𝑀𝑉 → ( ∈ ( clIntOp ‘𝑀) ↔ :(𝑀 × 𝑀)⟶𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  Vcvv 3474   × cxp 5674  wf 6539  cfv 6543  (class class class)co 7408  m cmap 8819   clIntOp cclintop 46597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-map 8821  df-intop 46599  df-clintop 46600
This theorem is referenced by:  clintop  46608  isassintop  46610
  Copyright terms: Public domain W3C validator