| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isclintop | Structured version Visualization version GIF version | ||
| Description: The predicate "is a closed (internal binary) operations for a set". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| isclintop | ⊢ (𝑀 ∈ 𝑉 → ( ⚬ ∈ ( clIntOp ‘𝑀) ↔ ⚬ :(𝑀 × 𝑀)⟶𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clintopval 48066 | . . 3 ⊢ (𝑀 ∈ 𝑉 → ( clIntOp ‘𝑀) = (𝑀 ↑m (𝑀 × 𝑀))) | |
| 2 | 1 | eleq2d 2819 | . 2 ⊢ (𝑀 ∈ 𝑉 → ( ⚬ ∈ ( clIntOp ‘𝑀) ↔ ⚬ ∈ (𝑀 ↑m (𝑀 × 𝑀)))) |
| 3 | sqxpexg 7758 | . . 3 ⊢ (𝑀 ∈ 𝑉 → (𝑀 × 𝑀) ∈ V) | |
| 4 | elmapg 8862 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ (𝑀 × 𝑀) ∈ V) → ( ⚬ ∈ (𝑀 ↑m (𝑀 × 𝑀)) ↔ ⚬ :(𝑀 × 𝑀)⟶𝑀)) | |
| 5 | 3, 4 | mpdan 687 | . 2 ⊢ (𝑀 ∈ 𝑉 → ( ⚬ ∈ (𝑀 ↑m (𝑀 × 𝑀)) ↔ ⚬ :(𝑀 × 𝑀)⟶𝑀)) |
| 6 | 2, 5 | bitrd 279 | 1 ⊢ (𝑀 ∈ 𝑉 → ( ⚬ ∈ ( clIntOp ‘𝑀) ↔ ⚬ :(𝑀 × 𝑀)⟶𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2107 Vcvv 3464 × cxp 5665 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ↑m cmap 8849 clIntOp cclintop 48059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-map 8851 df-intop 48061 df-clintop 48062 |
| This theorem is referenced by: clintop 48070 isassintop 48072 |
| Copyright terms: Public domain | W3C validator |