| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isclintop | Structured version Visualization version GIF version | ||
| Description: The predicate "is a closed (internal binary) operations for a set". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| isclintop | ⊢ (𝑀 ∈ 𝑉 → ( ⚬ ∈ ( clIntOp ‘𝑀) ↔ ⚬ :(𝑀 × 𝑀)⟶𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clintopval 48234 | . . 3 ⊢ (𝑀 ∈ 𝑉 → ( clIntOp ‘𝑀) = (𝑀 ↑m (𝑀 × 𝑀))) | |
| 2 | 1 | eleq2d 2817 | . 2 ⊢ (𝑀 ∈ 𝑉 → ( ⚬ ∈ ( clIntOp ‘𝑀) ↔ ⚬ ∈ (𝑀 ↑m (𝑀 × 𝑀)))) |
| 3 | sqxpexg 7688 | . . 3 ⊢ (𝑀 ∈ 𝑉 → (𝑀 × 𝑀) ∈ V) | |
| 4 | elmapg 8763 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ (𝑀 × 𝑀) ∈ V) → ( ⚬ ∈ (𝑀 ↑m (𝑀 × 𝑀)) ↔ ⚬ :(𝑀 × 𝑀)⟶𝑀)) | |
| 5 | 3, 4 | mpdan 687 | . 2 ⊢ (𝑀 ∈ 𝑉 → ( ⚬ ∈ (𝑀 ↑m (𝑀 × 𝑀)) ↔ ⚬ :(𝑀 × 𝑀)⟶𝑀)) |
| 6 | 2, 5 | bitrd 279 | 1 ⊢ (𝑀 ∈ 𝑉 → ( ⚬ ∈ ( clIntOp ‘𝑀) ↔ ⚬ :(𝑀 × 𝑀)⟶𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 Vcvv 3436 × cxp 5614 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 clIntOp cclintop 48227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-intop 48229 df-clintop 48230 |
| This theorem is referenced by: clintop 48238 isassintop 48240 |
| Copyright terms: Public domain | W3C validator |