MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetcvg Structured version   Visualization version   GIF version

Theorem cmetcvg 24801
Description: The convergence of a Cauchy filter in a complete metric space. (Contributed by Mario Carneiro, 14-Oct-2015.)
Hypothesis
Ref Expression
iscmet.1 𝐽 = (MetOpenβ€˜π·)
Assertion
Ref Expression
cmetcvg ((𝐷 ∈ (CMetβ€˜π‘‹) ∧ 𝐹 ∈ (CauFilβ€˜π·)) β†’ (𝐽 fLim 𝐹) β‰  βˆ…)

Proof of Theorem cmetcvg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 iscmet.1 . . . 4 𝐽 = (MetOpenβ€˜π·)
21iscmet 24800 . . 3 (𝐷 ∈ (CMetβ€˜π‘‹) ↔ (𝐷 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘“ ∈ (CauFilβ€˜π·)(𝐽 fLim 𝑓) β‰  βˆ…))
32simprbi 497 . 2 (𝐷 ∈ (CMetβ€˜π‘‹) β†’ βˆ€π‘“ ∈ (CauFilβ€˜π·)(𝐽 fLim 𝑓) β‰  βˆ…)
4 oveq2 7416 . . . 4 (𝑓 = 𝐹 β†’ (𝐽 fLim 𝑓) = (𝐽 fLim 𝐹))
54neeq1d 3000 . . 3 (𝑓 = 𝐹 β†’ ((𝐽 fLim 𝑓) β‰  βˆ… ↔ (𝐽 fLim 𝐹) β‰  βˆ…))
65rspccva 3611 . 2 ((βˆ€π‘“ ∈ (CauFilβ€˜π·)(𝐽 fLim 𝑓) β‰  βˆ… ∧ 𝐹 ∈ (CauFilβ€˜π·)) β†’ (𝐽 fLim 𝐹) β‰  βˆ…)
73, 6sylan 580 1 ((𝐷 ∈ (CMetβ€˜π‘‹) ∧ 𝐹 ∈ (CauFilβ€˜π·)) β†’ (𝐽 fLim 𝐹) β‰  βˆ…)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆ…c0 4322  β€˜cfv 6543  (class class class)co 7408  Metcmet 20929  MetOpencmopn 20933   fLim cflim 23437  CauFilccfil 24768  CMetccmet 24770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-cmet 24773
This theorem is referenced by:  cmetcaulem  24804  metsscmetcld  24831  cmetss  24832  cmetcusp  24870  minveclem4a  24946  fmcncfil  32906
  Copyright terms: Public domain W3C validator