![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmetcvg | Structured version Visualization version GIF version |
Description: The convergence of a Cauchy filter in a complete metric space. (Contributed by Mario Carneiro, 14-Oct-2015.) |
Ref | Expression |
---|---|
iscmet.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
cmetcvg | ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝐹) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscmet.1 | . . . 4 ⊢ 𝐽 = (MetOpen‘𝐷) | |
2 | 1 | iscmet 25337 | . . 3 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
3 | 2 | simprbi 496 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) → ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅) |
4 | oveq2 7456 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝐽 fLim 𝑓) = (𝐽 fLim 𝐹)) | |
5 | 4 | neeq1d 3006 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝐽 fLim 𝑓) ≠ ∅ ↔ (𝐽 fLim 𝐹) ≠ ∅)) |
6 | 5 | rspccva 3634 | . 2 ⊢ ((∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅ ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝐹) ≠ ∅) |
7 | 3, 6 | sylan 579 | 1 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝐹) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∅c0 4352 ‘cfv 6573 (class class class)co 7448 Metcmet 21373 MetOpencmopn 21377 fLim cflim 23963 CauFilccfil 25305 CMetccmet 25307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-cmet 25310 |
This theorem is referenced by: cmetcaulem 25341 metsscmetcld 25368 cmetss 25369 cmetcusp 25407 minveclem4a 25483 fmcncfil 33877 |
Copyright terms: Public domain | W3C validator |