| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmetcvg | Structured version Visualization version GIF version | ||
| Description: The convergence of a Cauchy filter in a complete metric space. (Contributed by Mario Carneiro, 14-Oct-2015.) |
| Ref | Expression |
|---|---|
| iscmet.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| Ref | Expression |
|---|---|
| cmetcvg | ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝐹) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmet.1 | . . . 4 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 2 | 1 | iscmet 25236 | . . 3 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
| 3 | 2 | simprbi 496 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) → ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅) |
| 4 | oveq2 7413 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝐽 fLim 𝑓) = (𝐽 fLim 𝐹)) | |
| 5 | 4 | neeq1d 2991 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝐽 fLim 𝑓) ≠ ∅ ↔ (𝐽 fLim 𝐹) ≠ ∅)) |
| 6 | 5 | rspccva 3600 | . 2 ⊢ ((∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅ ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝐹) ≠ ∅) |
| 7 | 3, 6 | sylan 580 | 1 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝐹) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∅c0 4308 ‘cfv 6531 (class class class)co 7405 Metcmet 21301 MetOpencmopn 21305 fLim cflim 23872 CauFilccfil 25204 CMetccmet 25206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-cmet 25209 |
| This theorem is referenced by: cmetcaulem 25240 metsscmetcld 25267 cmetss 25268 cmetcusp 25306 minveclem4a 25382 fmcncfil 33962 |
| Copyright terms: Public domain | W3C validator |