MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetcvg Structured version   Visualization version   GIF version

Theorem cmetcvg 25161
Description: The convergence of a Cauchy filter in a complete metric space. (Contributed by Mario Carneiro, 14-Oct-2015.)
Hypothesis
Ref Expression
iscmet.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
cmetcvg ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝐹) ≠ ∅)

Proof of Theorem cmetcvg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 iscmet.1 . . . 4 𝐽 = (MetOpen‘𝐷)
21iscmet 25160 . . 3 (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅))
32simprbi 496 . 2 (𝐷 ∈ (CMet‘𝑋) → ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)
4 oveq2 7377 . . . 4 (𝑓 = 𝐹 → (𝐽 fLim 𝑓) = (𝐽 fLim 𝐹))
54neeq1d 2984 . . 3 (𝑓 = 𝐹 → ((𝐽 fLim 𝑓) ≠ ∅ ↔ (𝐽 fLim 𝐹) ≠ ∅))
65rspccva 3584 . 2 ((∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅ ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝐹) ≠ ∅)
73, 6sylan 580 1 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝐹) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  c0 4292  cfv 6499  (class class class)co 7369  Metcmet 21226  MetOpencmopn 21230   fLim cflim 23797  CauFilccfil 25128  CMetccmet 25130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-cmet 25133
This theorem is referenced by:  cmetcaulem  25164  metsscmetcld  25191  cmetss  25192  cmetcusp  25230  minveclem4a  25306  fmcncfil  33894
  Copyright terms: Public domain W3C validator