![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmetcvg | Structured version Visualization version GIF version |
Description: The convergence of a Cauchy filter in a complete metric space. (Contributed by Mario Carneiro, 14-Oct-2015.) |
Ref | Expression |
---|---|
iscmet.1 | β’ π½ = (MetOpenβπ·) |
Ref | Expression |
---|---|
cmetcvg | β’ ((π· β (CMetβπ) β§ πΉ β (CauFilβπ·)) β (π½ fLim πΉ) β β ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscmet.1 | . . . 4 β’ π½ = (MetOpenβπ·) | |
2 | 1 | iscmet 24800 | . . 3 β’ (π· β (CMetβπ) β (π· β (Metβπ) β§ βπ β (CauFilβπ·)(π½ fLim π) β β )) |
3 | 2 | simprbi 497 | . 2 β’ (π· β (CMetβπ) β βπ β (CauFilβπ·)(π½ fLim π) β β ) |
4 | oveq2 7416 | . . . 4 β’ (π = πΉ β (π½ fLim π) = (π½ fLim πΉ)) | |
5 | 4 | neeq1d 3000 | . . 3 β’ (π = πΉ β ((π½ fLim π) β β β (π½ fLim πΉ) β β )) |
6 | 5 | rspccva 3611 | . 2 β’ ((βπ β (CauFilβπ·)(π½ fLim π) β β β§ πΉ β (CauFilβπ·)) β (π½ fLim πΉ) β β ) |
7 | 3, 6 | sylan 580 | 1 β’ ((π· β (CMetβπ) β§ πΉ β (CauFilβπ·)) β (π½ fLim πΉ) β β ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 βwral 3061 β c0 4322 βcfv 6543 (class class class)co 7408 Metcmet 20929 MetOpencmopn 20933 fLim cflim 23437 CauFilccfil 24768 CMetccmet 24770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-cmet 24773 |
This theorem is referenced by: cmetcaulem 24804 metsscmetcld 24831 cmetss 24832 cmetcusp 24870 minveclem4a 24946 fmcncfil 32906 |
Copyright terms: Public domain | W3C validator |