| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmetcvg | Structured version Visualization version GIF version | ||
| Description: The convergence of a Cauchy filter in a complete metric space. (Contributed by Mario Carneiro, 14-Oct-2015.) |
| Ref | Expression |
|---|---|
| iscmet.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| Ref | Expression |
|---|---|
| cmetcvg | ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝐹) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmet.1 | . . . 4 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 2 | 1 | iscmet 25191 | . . 3 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
| 3 | 2 | simprbi 496 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) → ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅) |
| 4 | oveq2 7398 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝐽 fLim 𝑓) = (𝐽 fLim 𝐹)) | |
| 5 | 4 | neeq1d 2985 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝐽 fLim 𝑓) ≠ ∅ ↔ (𝐽 fLim 𝐹) ≠ ∅)) |
| 6 | 5 | rspccva 3590 | . 2 ⊢ ((∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅ ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝐹) ≠ ∅) |
| 7 | 3, 6 | sylan 580 | 1 ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝐹) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∅c0 4299 ‘cfv 6514 (class class class)co 7390 Metcmet 21257 MetOpencmopn 21261 fLim cflim 23828 CauFilccfil 25159 CMetccmet 25161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-cmet 25164 |
| This theorem is referenced by: cmetcaulem 25195 metsscmetcld 25222 cmetss 25223 cmetcusp 25261 minveclem4a 25337 fmcncfil 33928 |
| Copyright terms: Public domain | W3C validator |