Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iscmet | Structured version Visualization version GIF version |
Description: The property "𝐷 is a complete metric." meaning all Cauchy filters converge to a point in the space. (Contributed by Mario Carneiro, 1-May-2014.) (Revised by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
iscmet.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
iscmet | ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6807 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝑋 ∈ V) | |
2 | elfvex 6807 | . . 3 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝑋 ∈ V) | |
3 | 2 | adantr 481 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅) → 𝑋 ∈ V) |
4 | fveq2 6774 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (Met‘𝑥) = (Met‘𝑋)) | |
5 | 4 | rabeqdv 3419 | . . . . 5 ⊢ (𝑥 = 𝑋 → {𝑑 ∈ (Met‘𝑥) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅} = {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅}) |
6 | df-cmet 24421 | . . . . 5 ⊢ CMet = (𝑥 ∈ V ↦ {𝑑 ∈ (Met‘𝑥) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅}) | |
7 | fvex 6787 | . . . . . 6 ⊢ (Met‘𝑋) ∈ V | |
8 | 7 | rabex 5256 | . . . . 5 ⊢ {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅} ∈ V |
9 | 5, 6, 8 | fvmpt 6875 | . . . 4 ⊢ (𝑋 ∈ V → (CMet‘𝑋) = {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅}) |
10 | 9 | eleq2d 2824 | . . 3 ⊢ (𝑋 ∈ V → (𝐷 ∈ (CMet‘𝑋) ↔ 𝐷 ∈ {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅})) |
11 | fveq2 6774 | . . . . 5 ⊢ (𝑑 = 𝐷 → (CauFil‘𝑑) = (CauFil‘𝐷)) | |
12 | fveq2 6774 | . . . . . . . 8 ⊢ (𝑑 = 𝐷 → (MetOpen‘𝑑) = (MetOpen‘𝐷)) | |
13 | iscmet.1 | . . . . . . . 8 ⊢ 𝐽 = (MetOpen‘𝐷) | |
14 | 12, 13 | eqtr4di 2796 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → (MetOpen‘𝑑) = 𝐽) |
15 | 14 | oveq1d 7290 | . . . . . 6 ⊢ (𝑑 = 𝐷 → ((MetOpen‘𝑑) fLim 𝑓) = (𝐽 fLim 𝑓)) |
16 | 15 | neeq1d 3003 | . . . . 5 ⊢ (𝑑 = 𝐷 → (((MetOpen‘𝑑) fLim 𝑓) ≠ ∅ ↔ (𝐽 fLim 𝑓) ≠ ∅)) |
17 | 11, 16 | raleqbidv 3336 | . . . 4 ⊢ (𝑑 = 𝐷 → (∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
18 | 17 | elrab 3624 | . . 3 ⊢ (𝐷 ∈ {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅} ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
19 | 10, 18 | bitrdi 287 | . 2 ⊢ (𝑋 ∈ V → (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅))) |
20 | 1, 3, 19 | pm5.21nii 380 | 1 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 {crab 3068 Vcvv 3432 ∅c0 4256 ‘cfv 6433 (class class class)co 7275 Metcmet 20583 MetOpencmopn 20587 fLim cflim 23085 CauFilccfil 24416 CMetccmet 24418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-cmet 24421 |
This theorem is referenced by: cmetcvg 24449 cmetmet 24450 iscmet3 24457 cmetss 24480 equivcmet 24481 relcmpcmet 24482 cmetcusp1 24517 |
Copyright terms: Public domain | W3C validator |