MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet Structured version   Visualization version   GIF version

Theorem iscmet 25214
Description: The property "𝐷 is a complete metric." meaning all Cauchy filters converge to a point in the space. (Contributed by Mario Carneiro, 1-May-2014.) (Revised by Mario Carneiro, 13-Oct-2015.)
Hypothesis
Ref Expression
iscmet.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
iscmet (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅))
Distinct variable groups:   𝐷,𝑓   𝑓,𝐽   𝑓,𝑋

Proof of Theorem iscmet
Dummy variables 𝑑 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6865 . 2 (𝐷 ∈ (CMet‘𝑋) → 𝑋 ∈ V)
2 elfvex 6865 . . 3 (𝐷 ∈ (Met‘𝑋) → 𝑋 ∈ V)
32adantr 480 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅) → 𝑋 ∈ V)
4 fveq2 6830 . . . . . 6 (𝑥 = 𝑋 → (Met‘𝑥) = (Met‘𝑋))
54rabeqdv 3411 . . . . 5 (𝑥 = 𝑋 → {𝑑 ∈ (Met‘𝑥) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅} = {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅})
6 df-cmet 25187 . . . . 5 CMet = (𝑥 ∈ V ↦ {𝑑 ∈ (Met‘𝑥) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅})
7 fvex 6843 . . . . . 6 (Met‘𝑋) ∈ V
87rabex 5281 . . . . 5 {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅} ∈ V
95, 6, 8fvmpt 6937 . . . 4 (𝑋 ∈ V → (CMet‘𝑋) = {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅})
109eleq2d 2819 . . 3 (𝑋 ∈ V → (𝐷 ∈ (CMet‘𝑋) ↔ 𝐷 ∈ {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅}))
11 fveq2 6830 . . . . 5 (𝑑 = 𝐷 → (CauFil‘𝑑) = (CauFil‘𝐷))
12 fveq2 6830 . . . . . . . 8 (𝑑 = 𝐷 → (MetOpen‘𝑑) = (MetOpen‘𝐷))
13 iscmet.1 . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
1412, 13eqtr4di 2786 . . . . . . 7 (𝑑 = 𝐷 → (MetOpen‘𝑑) = 𝐽)
1514oveq1d 7369 . . . . . 6 (𝑑 = 𝐷 → ((MetOpen‘𝑑) fLim 𝑓) = (𝐽 fLim 𝑓))
1615neeq1d 2988 . . . . 5 (𝑑 = 𝐷 → (((MetOpen‘𝑑) fLim 𝑓) ≠ ∅ ↔ (𝐽 fLim 𝑓) ≠ ∅))
1711, 16raleqbidv 3313 . . . 4 (𝑑 = 𝐷 → (∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅))
1817elrab 3643 . . 3 (𝐷 ∈ {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅} ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅))
1910, 18bitrdi 287 . 2 (𝑋 ∈ V → (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)))
201, 3, 19pm5.21nii 378 1 (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  {crab 3396  Vcvv 3437  c0 4282  cfv 6488  (class class class)co 7354  Metcmet 21281  MetOpencmopn 21285   fLim cflim 23852  CauFilccfil 25182  CMetccmet 25184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6444  df-fun 6490  df-fv 6496  df-ov 7357  df-cmet 25187
This theorem is referenced by:  cmetcvg  25215  cmetmet  25216  iscmet3  25223  cmetss  25246  equivcmet  25247  relcmpcmet  25248  cmetcusp1  25283
  Copyright terms: Public domain W3C validator