| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscmet | Structured version Visualization version GIF version | ||
| Description: The property "𝐷 is a complete metric." meaning all Cauchy filters converge to a point in the space. (Contributed by Mario Carneiro, 1-May-2014.) (Revised by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| iscmet.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| Ref | Expression |
|---|---|
| iscmet | ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex 6914 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝑋 ∈ V) | |
| 2 | elfvex 6914 | . . 3 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝑋 ∈ V) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅) → 𝑋 ∈ V) |
| 4 | fveq2 6876 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (Met‘𝑥) = (Met‘𝑋)) | |
| 5 | 4 | rabeqdv 3431 | . . . . 5 ⊢ (𝑥 = 𝑋 → {𝑑 ∈ (Met‘𝑥) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅} = {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅}) |
| 6 | df-cmet 25209 | . . . . 5 ⊢ CMet = (𝑥 ∈ V ↦ {𝑑 ∈ (Met‘𝑥) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅}) | |
| 7 | fvex 6889 | . . . . . 6 ⊢ (Met‘𝑋) ∈ V | |
| 8 | 7 | rabex 5309 | . . . . 5 ⊢ {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅} ∈ V |
| 9 | 5, 6, 8 | fvmpt 6986 | . . . 4 ⊢ (𝑋 ∈ V → (CMet‘𝑋) = {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅}) |
| 10 | 9 | eleq2d 2820 | . . 3 ⊢ (𝑋 ∈ V → (𝐷 ∈ (CMet‘𝑋) ↔ 𝐷 ∈ {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅})) |
| 11 | fveq2 6876 | . . . . 5 ⊢ (𝑑 = 𝐷 → (CauFil‘𝑑) = (CauFil‘𝐷)) | |
| 12 | fveq2 6876 | . . . . . . . 8 ⊢ (𝑑 = 𝐷 → (MetOpen‘𝑑) = (MetOpen‘𝐷)) | |
| 13 | iscmet.1 | . . . . . . . 8 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 14 | 12, 13 | eqtr4di 2788 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → (MetOpen‘𝑑) = 𝐽) |
| 15 | 14 | oveq1d 7420 | . . . . . 6 ⊢ (𝑑 = 𝐷 → ((MetOpen‘𝑑) fLim 𝑓) = (𝐽 fLim 𝑓)) |
| 16 | 15 | neeq1d 2991 | . . . . 5 ⊢ (𝑑 = 𝐷 → (((MetOpen‘𝑑) fLim 𝑓) ≠ ∅ ↔ (𝐽 fLim 𝑓) ≠ ∅)) |
| 17 | 11, 16 | raleqbidv 3325 | . . . 4 ⊢ (𝑑 = 𝐷 → (∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
| 18 | 17 | elrab 3671 | . . 3 ⊢ (𝐷 ∈ {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅} ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
| 19 | 10, 18 | bitrdi 287 | . 2 ⊢ (𝑋 ∈ V → (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅))) |
| 20 | 1, 3, 19 | pm5.21nii 378 | 1 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 {crab 3415 Vcvv 3459 ∅c0 4308 ‘cfv 6531 (class class class)co 7405 Metcmet 21301 MetOpencmopn 21305 fLim cflim 23872 CauFilccfil 25204 CMetccmet 25206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-cmet 25209 |
| This theorem is referenced by: cmetcvg 25237 cmetmet 25238 iscmet3 25245 cmetss 25268 equivcmet 25269 relcmpcmet 25270 cmetcusp1 25305 |
| Copyright terms: Public domain | W3C validator |