Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iscmet | Structured version Visualization version GIF version |
Description: The property "𝐷 is a complete metric." meaning all Cauchy filters converge to a point in the space. (Contributed by Mario Carneiro, 1-May-2014.) (Revised by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
iscmet.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
iscmet | ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6789 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝑋 ∈ V) | |
2 | elfvex 6789 | . . 3 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝑋 ∈ V) | |
3 | 2 | adantr 480 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅) → 𝑋 ∈ V) |
4 | fveq2 6756 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (Met‘𝑥) = (Met‘𝑋)) | |
5 | 4 | rabeqdv 3409 | . . . . 5 ⊢ (𝑥 = 𝑋 → {𝑑 ∈ (Met‘𝑥) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅} = {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅}) |
6 | df-cmet 24326 | . . . . 5 ⊢ CMet = (𝑥 ∈ V ↦ {𝑑 ∈ (Met‘𝑥) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅}) | |
7 | fvex 6769 | . . . . . 6 ⊢ (Met‘𝑋) ∈ V | |
8 | 7 | rabex 5251 | . . . . 5 ⊢ {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅} ∈ V |
9 | 5, 6, 8 | fvmpt 6857 | . . . 4 ⊢ (𝑋 ∈ V → (CMet‘𝑋) = {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅}) |
10 | 9 | eleq2d 2824 | . . 3 ⊢ (𝑋 ∈ V → (𝐷 ∈ (CMet‘𝑋) ↔ 𝐷 ∈ {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅})) |
11 | fveq2 6756 | . . . . 5 ⊢ (𝑑 = 𝐷 → (CauFil‘𝑑) = (CauFil‘𝐷)) | |
12 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑑 = 𝐷 → (MetOpen‘𝑑) = (MetOpen‘𝐷)) | |
13 | iscmet.1 | . . . . . . . 8 ⊢ 𝐽 = (MetOpen‘𝐷) | |
14 | 12, 13 | eqtr4di 2797 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → (MetOpen‘𝑑) = 𝐽) |
15 | 14 | oveq1d 7270 | . . . . . 6 ⊢ (𝑑 = 𝐷 → ((MetOpen‘𝑑) fLim 𝑓) = (𝐽 fLim 𝑓)) |
16 | 15 | neeq1d 3002 | . . . . 5 ⊢ (𝑑 = 𝐷 → (((MetOpen‘𝑑) fLim 𝑓) ≠ ∅ ↔ (𝐽 fLim 𝑓) ≠ ∅)) |
17 | 11, 16 | raleqbidv 3327 | . . . 4 ⊢ (𝑑 = 𝐷 → (∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
18 | 17 | elrab 3617 | . . 3 ⊢ (𝐷 ∈ {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅} ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
19 | 10, 18 | bitrdi 286 | . 2 ⊢ (𝑋 ∈ V → (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅))) |
20 | 1, 3, 19 | pm5.21nii 379 | 1 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 {crab 3067 Vcvv 3422 ∅c0 4253 ‘cfv 6418 (class class class)co 7255 Metcmet 20496 MetOpencmopn 20500 fLim cflim 22993 CauFilccfil 24321 CMetccmet 24323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-cmet 24326 |
This theorem is referenced by: cmetcvg 24354 cmetmet 24355 iscmet3 24362 cmetss 24385 equivcmet 24386 relcmpcmet 24387 cmetcusp1 24422 |
Copyright terms: Public domain | W3C validator |