MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet Structured version   Visualization version   GIF version

Theorem iscmet 24800
Description: The property "𝐷 is a complete metric." meaning all Cauchy filters converge to a point in the space. (Contributed by Mario Carneiro, 1-May-2014.) (Revised by Mario Carneiro, 13-Oct-2015.)
Hypothesis
Ref Expression
iscmet.1 𝐽 = (MetOpenβ€˜π·)
Assertion
Ref Expression
iscmet (𝐷 ∈ (CMetβ€˜π‘‹) ↔ (𝐷 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘“ ∈ (CauFilβ€˜π·)(𝐽 fLim 𝑓) β‰  βˆ…))
Distinct variable groups:   𝐷,𝑓   𝑓,𝐽   𝑓,𝑋

Proof of Theorem iscmet
Dummy variables 𝑑 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6929 . 2 (𝐷 ∈ (CMetβ€˜π‘‹) β†’ 𝑋 ∈ V)
2 elfvex 6929 . . 3 (𝐷 ∈ (Metβ€˜π‘‹) β†’ 𝑋 ∈ V)
32adantr 481 . 2 ((𝐷 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘“ ∈ (CauFilβ€˜π·)(𝐽 fLim 𝑓) β‰  βˆ…) β†’ 𝑋 ∈ V)
4 fveq2 6891 . . . . . 6 (π‘₯ = 𝑋 β†’ (Metβ€˜π‘₯) = (Metβ€˜π‘‹))
54rabeqdv 3447 . . . . 5 (π‘₯ = 𝑋 β†’ {𝑑 ∈ (Metβ€˜π‘₯) ∣ βˆ€π‘“ ∈ (CauFilβ€˜π‘‘)((MetOpenβ€˜π‘‘) fLim 𝑓) β‰  βˆ…} = {𝑑 ∈ (Metβ€˜π‘‹) ∣ βˆ€π‘“ ∈ (CauFilβ€˜π‘‘)((MetOpenβ€˜π‘‘) fLim 𝑓) β‰  βˆ…})
6 df-cmet 24773 . . . . 5 CMet = (π‘₯ ∈ V ↦ {𝑑 ∈ (Metβ€˜π‘₯) ∣ βˆ€π‘“ ∈ (CauFilβ€˜π‘‘)((MetOpenβ€˜π‘‘) fLim 𝑓) β‰  βˆ…})
7 fvex 6904 . . . . . 6 (Metβ€˜π‘‹) ∈ V
87rabex 5332 . . . . 5 {𝑑 ∈ (Metβ€˜π‘‹) ∣ βˆ€π‘“ ∈ (CauFilβ€˜π‘‘)((MetOpenβ€˜π‘‘) fLim 𝑓) β‰  βˆ…} ∈ V
95, 6, 8fvmpt 6998 . . . 4 (𝑋 ∈ V β†’ (CMetβ€˜π‘‹) = {𝑑 ∈ (Metβ€˜π‘‹) ∣ βˆ€π‘“ ∈ (CauFilβ€˜π‘‘)((MetOpenβ€˜π‘‘) fLim 𝑓) β‰  βˆ…})
109eleq2d 2819 . . 3 (𝑋 ∈ V β†’ (𝐷 ∈ (CMetβ€˜π‘‹) ↔ 𝐷 ∈ {𝑑 ∈ (Metβ€˜π‘‹) ∣ βˆ€π‘“ ∈ (CauFilβ€˜π‘‘)((MetOpenβ€˜π‘‘) fLim 𝑓) β‰  βˆ…}))
11 fveq2 6891 . . . . 5 (𝑑 = 𝐷 β†’ (CauFilβ€˜π‘‘) = (CauFilβ€˜π·))
12 fveq2 6891 . . . . . . . 8 (𝑑 = 𝐷 β†’ (MetOpenβ€˜π‘‘) = (MetOpenβ€˜π·))
13 iscmet.1 . . . . . . . 8 𝐽 = (MetOpenβ€˜π·)
1412, 13eqtr4di 2790 . . . . . . 7 (𝑑 = 𝐷 β†’ (MetOpenβ€˜π‘‘) = 𝐽)
1514oveq1d 7423 . . . . . 6 (𝑑 = 𝐷 β†’ ((MetOpenβ€˜π‘‘) fLim 𝑓) = (𝐽 fLim 𝑓))
1615neeq1d 3000 . . . . 5 (𝑑 = 𝐷 β†’ (((MetOpenβ€˜π‘‘) fLim 𝑓) β‰  βˆ… ↔ (𝐽 fLim 𝑓) β‰  βˆ…))
1711, 16raleqbidv 3342 . . . 4 (𝑑 = 𝐷 β†’ (βˆ€π‘“ ∈ (CauFilβ€˜π‘‘)((MetOpenβ€˜π‘‘) fLim 𝑓) β‰  βˆ… ↔ βˆ€π‘“ ∈ (CauFilβ€˜π·)(𝐽 fLim 𝑓) β‰  βˆ…))
1817elrab 3683 . . 3 (𝐷 ∈ {𝑑 ∈ (Metβ€˜π‘‹) ∣ βˆ€π‘“ ∈ (CauFilβ€˜π‘‘)((MetOpenβ€˜π‘‘) fLim 𝑓) β‰  βˆ…} ↔ (𝐷 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘“ ∈ (CauFilβ€˜π·)(𝐽 fLim 𝑓) β‰  βˆ…))
1910, 18bitrdi 286 . 2 (𝑋 ∈ V β†’ (𝐷 ∈ (CMetβ€˜π‘‹) ↔ (𝐷 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘“ ∈ (CauFilβ€˜π·)(𝐽 fLim 𝑓) β‰  βˆ…)))
201, 3, 19pm5.21nii 379 1 (𝐷 ∈ (CMetβ€˜π‘‹) ↔ (𝐷 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘“ ∈ (CauFilβ€˜π·)(𝐽 fLim 𝑓) β‰  βˆ…))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  {crab 3432  Vcvv 3474  βˆ…c0 4322  β€˜cfv 6543  (class class class)co 7408  Metcmet 20929  MetOpencmopn 20933   fLim cflim 23437  CauFilccfil 24768  CMetccmet 24770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-cmet 24773
This theorem is referenced by:  cmetcvg  24801  cmetmet  24802  iscmet3  24809  cmetss  24832  equivcmet  24833  relcmpcmet  24834  cmetcusp1  24869
  Copyright terms: Public domain W3C validator