| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscmet | Structured version Visualization version GIF version | ||
| Description: The property "𝐷 is a complete metric." meaning all Cauchy filters converge to a point in the space. (Contributed by Mario Carneiro, 1-May-2014.) (Revised by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| iscmet.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| Ref | Expression |
|---|---|
| iscmet | ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex 6899 | . 2 ⊢ (𝐷 ∈ (CMet‘𝑋) → 𝑋 ∈ V) | |
| 2 | elfvex 6899 | . . 3 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝑋 ∈ V) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅) → 𝑋 ∈ V) |
| 4 | fveq2 6861 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (Met‘𝑥) = (Met‘𝑋)) | |
| 5 | 4 | rabeqdv 3424 | . . . . 5 ⊢ (𝑥 = 𝑋 → {𝑑 ∈ (Met‘𝑥) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅} = {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅}) |
| 6 | df-cmet 25164 | . . . . 5 ⊢ CMet = (𝑥 ∈ V ↦ {𝑑 ∈ (Met‘𝑥) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅}) | |
| 7 | fvex 6874 | . . . . . 6 ⊢ (Met‘𝑋) ∈ V | |
| 8 | 7 | rabex 5297 | . . . . 5 ⊢ {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅} ∈ V |
| 9 | 5, 6, 8 | fvmpt 6971 | . . . 4 ⊢ (𝑋 ∈ V → (CMet‘𝑋) = {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅}) |
| 10 | 9 | eleq2d 2815 | . . 3 ⊢ (𝑋 ∈ V → (𝐷 ∈ (CMet‘𝑋) ↔ 𝐷 ∈ {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅})) |
| 11 | fveq2 6861 | . . . . 5 ⊢ (𝑑 = 𝐷 → (CauFil‘𝑑) = (CauFil‘𝐷)) | |
| 12 | fveq2 6861 | . . . . . . . 8 ⊢ (𝑑 = 𝐷 → (MetOpen‘𝑑) = (MetOpen‘𝐷)) | |
| 13 | iscmet.1 | . . . . . . . 8 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 14 | 12, 13 | eqtr4di 2783 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → (MetOpen‘𝑑) = 𝐽) |
| 15 | 14 | oveq1d 7405 | . . . . . 6 ⊢ (𝑑 = 𝐷 → ((MetOpen‘𝑑) fLim 𝑓) = (𝐽 fLim 𝑓)) |
| 16 | 15 | neeq1d 2985 | . . . . 5 ⊢ (𝑑 = 𝐷 → (((MetOpen‘𝑑) fLim 𝑓) ≠ ∅ ↔ (𝐽 fLim 𝑓) ≠ ∅)) |
| 17 | 11, 16 | raleqbidv 3321 | . . . 4 ⊢ (𝑑 = 𝐷 → (∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅ ↔ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
| 18 | 17 | elrab 3662 | . . 3 ⊢ (𝐷 ∈ {𝑑 ∈ (Met‘𝑋) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅} ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
| 19 | 10, 18 | bitrdi 287 | . 2 ⊢ (𝑋 ∈ V → (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅))) |
| 20 | 1, 3, 19 | pm5.21nii 378 | 1 ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 {crab 3408 Vcvv 3450 ∅c0 4299 ‘cfv 6514 (class class class)co 7390 Metcmet 21257 MetOpencmopn 21261 fLim cflim 23828 CauFilccfil 25159 CMetccmet 25161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-cmet 25164 |
| This theorem is referenced by: cmetcvg 25192 cmetmet 25193 iscmet3 25200 cmetss 25223 equivcmet 25224 relcmpcmet 25225 cmetcusp1 25260 |
| Copyright terms: Public domain | W3C validator |