MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetss Structured version   Visualization version   GIF version

Theorem cmetss 24680
Description: A subspace of a complete metric space is complete iff it is closed in the parent space. Theorem 1.4-7 of [Kreyszig] p. 30. (Contributed by NM, 28-Jan-2008.) (Revised by Mario Carneiro, 15-Oct-2015.) (Proof shortened by AV, 9-Oct-2022.)
Hypothesis
Ref Expression
metsscmetcld.j 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
cmetss (𝐷 ∈ (CMet‘𝑋) → ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝐽)))

Proof of Theorem cmetss
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cmetmet 24650 . . 3 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
2 metsscmetcld.j . . . 4 𝐽 = (MetOpen‘𝐷)
32metsscmetcld 24679 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑌 ∈ (Clsd‘𝐽))
41, 3sylan 580 . 2 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑌 ∈ (Clsd‘𝐽))
51adantr 481 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐷 ∈ (Met‘𝑋))
6 eqid 2736 . . . . . . 7 𝐽 = 𝐽
76cldss 22380 . . . . . 6 (𝑌 ∈ (Clsd‘𝐽) → 𝑌 𝐽)
87adantl 482 . . . . 5 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 𝐽)
9 metxmet 23687 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
102mopnuni 23794 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
115, 9, 103syl 18 . . . . 5 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑋 = 𝐽)
128, 11sseqtrrd 3985 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌𝑋)
13 metres2 23716 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
145, 12, 13syl2anc 584 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
151, 9syl 17 . . . . . . . . . 10 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
1615ad2antrr 724 . . . . . . . . 9 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐷 ∈ (∞Met‘𝑋))
1712adantr 481 . . . . . . . . 9 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑌𝑋)
18 eqid 2736 . . . . . . . . . 10 (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌))
19 eqid 2736 . . . . . . . . . 10 (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))
2018, 2, 19metrest 23880 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
2116, 17, 20syl2anc 584 . . . . . . . 8 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐽t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
2221eqcomd 2742 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (𝐽t 𝑌))
23 metxmet 23687 . . . . . . . . . . 11 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
2414, 23syl 17 . . . . . . . . . 10 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
25 cfilfil 24631 . . . . . . . . . 10 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ∈ (Fil‘𝑌))
2624, 25sylan 580 . . . . . . . . 9 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ∈ (Fil‘𝑌))
27 elfvdm 6879 . . . . . . . . . 10 (𝐷 ∈ (CMet‘𝑋) → 𝑋 ∈ dom CMet)
2827ad2antrr 724 . . . . . . . . 9 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑋 ∈ dom CMet)
29 trfg 23242 . . . . . . . . 9 ((𝑓 ∈ (Fil‘𝑌) ∧ 𝑌𝑋𝑋 ∈ dom CMet) → ((𝑋filGen𝑓) ↾t 𝑌) = 𝑓)
3026, 17, 28, 29syl3anc 1371 . . . . . . . 8 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((𝑋filGen𝑓) ↾t 𝑌) = 𝑓)
3130eqcomd 2742 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 = ((𝑋filGen𝑓) ↾t 𝑌))
3222, 31oveq12d 7375 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim 𝑓) = ((𝐽t 𝑌) fLim ((𝑋filGen𝑓) ↾t 𝑌)))
332mopntopon 23792 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
3416, 33syl 17 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐽 ∈ (TopOn‘𝑋))
35 filfbas 23199 . . . . . . . . . 10 (𝑓 ∈ (Fil‘𝑌) → 𝑓 ∈ (fBas‘𝑌))
3626, 35syl 17 . . . . . . . . 9 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ∈ (fBas‘𝑌))
37 filsspw 23202 . . . . . . . . . . 11 (𝑓 ∈ (Fil‘𝑌) → 𝑓 ⊆ 𝒫 𝑌)
3826, 37syl 17 . . . . . . . . . 10 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ⊆ 𝒫 𝑌)
3917sspwd 4573 . . . . . . . . . 10 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝒫 𝑌 ⊆ 𝒫 𝑋)
4038, 39sstrd 3954 . . . . . . . . 9 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ⊆ 𝒫 𝑋)
41 fbasweak 23216 . . . . . . . . 9 ((𝑓 ∈ (fBas‘𝑌) ∧ 𝑓 ⊆ 𝒫 𝑋𝑋 ∈ dom CMet) → 𝑓 ∈ (fBas‘𝑋))
4236, 40, 28, 41syl3anc 1371 . . . . . . . 8 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ∈ (fBas‘𝑋))
43 fgcl 23229 . . . . . . . 8 (𝑓 ∈ (fBas‘𝑋) → (𝑋filGen𝑓) ∈ (Fil‘𝑋))
4442, 43syl 17 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝑋filGen𝑓) ∈ (Fil‘𝑋))
45 ssfg 23223 . . . . . . . . 9 (𝑓 ∈ (fBas‘𝑋) → 𝑓 ⊆ (𝑋filGen𝑓))
4642, 45syl 17 . . . . . . . 8 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ⊆ (𝑋filGen𝑓))
47 filtop 23206 . . . . . . . . 9 (𝑓 ∈ (Fil‘𝑌) → 𝑌𝑓)
4826, 47syl 17 . . . . . . . 8 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑌𝑓)
4946, 48sseldd 3945 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑌 ∈ (𝑋filGen𝑓))
50 flimrest 23334 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen𝑓) ∈ (Fil‘𝑋) ∧ 𝑌 ∈ (𝑋filGen𝑓)) → ((𝐽t 𝑌) fLim ((𝑋filGen𝑓) ↾t 𝑌)) = ((𝐽 fLim (𝑋filGen𝑓)) ∩ 𝑌))
5134, 44, 49, 50syl3anc 1371 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((𝐽t 𝑌) fLim ((𝑋filGen𝑓) ↾t 𝑌)) = ((𝐽 fLim (𝑋filGen𝑓)) ∩ 𝑌))
52 flimclsi 23329 . . . . . . . . 9 (𝑌 ∈ (𝑋filGen𝑓) → (𝐽 fLim (𝑋filGen𝑓)) ⊆ ((cls‘𝐽)‘𝑌))
5349, 52syl 17 . . . . . . . 8 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐽 fLim (𝑋filGen𝑓)) ⊆ ((cls‘𝐽)‘𝑌))
54 cldcls 22393 . . . . . . . . 9 (𝑌 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑌) = 𝑌)
5554ad2antlr 725 . . . . . . . 8 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((cls‘𝐽)‘𝑌) = 𝑌)
5653, 55sseqtrd 3984 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐽 fLim (𝑋filGen𝑓)) ⊆ 𝑌)
57 df-ss 3927 . . . . . . 7 ((𝐽 fLim (𝑋filGen𝑓)) ⊆ 𝑌 ↔ ((𝐽 fLim (𝑋filGen𝑓)) ∩ 𝑌) = (𝐽 fLim (𝑋filGen𝑓)))
5856, 57sylib 217 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((𝐽 fLim (𝑋filGen𝑓)) ∩ 𝑌) = (𝐽 fLim (𝑋filGen𝑓)))
5932, 51, 583eqtrd 2780 . . . . 5 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim 𝑓) = (𝐽 fLim (𝑋filGen𝑓)))
60 simpll 765 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐷 ∈ (CMet‘𝑋))
615, 9syl 17 . . . . . . 7 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐷 ∈ (∞Met‘𝑋))
62 cfilresi 24659 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝑋filGen𝑓) ∈ (CauFil‘𝐷))
6361, 62sylan 580 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝑋filGen𝑓) ∈ (CauFil‘𝐷))
642cmetcvg 24649 . . . . . 6 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑋filGen𝑓) ∈ (CauFil‘𝐷)) → (𝐽 fLim (𝑋filGen𝑓)) ≠ ∅)
6560, 63, 64syl2anc 584 . . . . 5 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐽 fLim (𝑋filGen𝑓)) ≠ ∅)
6659, 65eqnetrd 3011 . . . 4 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim 𝑓) ≠ ∅)
6766ralrimiva 3143 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ∀𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim 𝑓) ≠ ∅)
6819iscmet 24648 . . 3 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌) ∧ ∀𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim 𝑓) ≠ ∅))
6914, 67, 68sylanbrc 583 . 2 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
704, 69impbida 799 1 (𝐷 ∈ (CMet‘𝑋) → ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  cin 3909  wss 3910  c0 4282  𝒫 cpw 4560   cuni 4865   × cxp 5631  dom cdm 5633  cres 5635  cfv 6496  (class class class)co 7357  t crest 17302  ∞Metcxmet 20781  Metcmet 20782  fBascfbas 20784  filGencfg 20785  MetOpencmopn 20786  TopOnctopon 22259  Clsdccld 22367  clsccl 22369  Filcfil 23196   fLim cflim 23285  CauFilccfil 24616  CMetccmet 24618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ico 13270  df-icc 13271  df-rest 17304  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-top 22243  df-topon 22260  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-haus 22666  df-fil 23197  df-flim 23290  df-cfil 24619  df-cmet 24621
This theorem is referenced by:  recmet  24687  cmsss  24715  cmscsscms  24737  bnsscmcl  29810  rrnheibor  36296
  Copyright terms: Public domain W3C validator