| Step | Hyp | Ref
| Expression |
| 1 | | cmetmet 25320 |
. . 3
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
| 2 | | metsscmetcld.j |
. . . 4
⊢ 𝐽 = (MetOpen‘𝐷) |
| 3 | 2 | metsscmetcld 25349 |
. . 3
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑌 ∈ (Clsd‘𝐽)) |
| 4 | 1, 3 | sylan 580 |
. 2
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑌 ∈ (Clsd‘𝐽)) |
| 5 | 1 | adantr 480 |
. . . 4
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐷 ∈ (Met‘𝑋)) |
| 6 | | eqid 2737 |
. . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 7 | 6 | cldss 23037 |
. . . . . 6
⊢ (𝑌 ∈ (Clsd‘𝐽) → 𝑌 ⊆ ∪ 𝐽) |
| 8 | 7 | adantl 481 |
. . . . 5
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 ⊆ ∪ 𝐽) |
| 9 | | metxmet 24344 |
. . . . . 6
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| 10 | 2 | mopnuni 24451 |
. . . . . 6
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
| 11 | 5, 9, 10 | 3syl 18 |
. . . . 5
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑋 = ∪ 𝐽) |
| 12 | 8, 11 | sseqtrrd 4021 |
. . . 4
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 ⊆ 𝑋) |
| 13 | | metres2 24373 |
. . . 4
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌)) |
| 14 | 5, 12, 13 | syl2anc 584 |
. . 3
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌)) |
| 15 | 1, 9 | syl 17 |
. . . . . . . . . 10
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| 16 | 15 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐷 ∈ (∞Met‘𝑋)) |
| 17 | 12 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑌 ⊆ 𝑋) |
| 18 | | eqid 2737 |
. . . . . . . . . 10
⊢ (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌)) |
| 19 | | eqid 2737 |
. . . . . . . . . 10
⊢
(MetOpen‘(𝐷
↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) |
| 20 | 18, 2, 19 | metrest 24537 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) |
| 21 | 16, 17, 20 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐽 ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) |
| 22 | 21 | eqcomd 2743 |
. . . . . . 7
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (𝐽 ↾t 𝑌)) |
| 23 | | metxmet 24344 |
. . . . . . . . . . 11
⊢ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌)) |
| 24 | 14, 23 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌)) |
| 25 | | cfilfil 25301 |
. . . . . . . . . 10
⊢ (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ∈ (Fil‘𝑌)) |
| 26 | 24, 25 | sylan 580 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ∈ (Fil‘𝑌)) |
| 27 | | elfvdm 6943 |
. . . . . . . . . 10
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝑋 ∈ dom CMet) |
| 28 | 27 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑋 ∈ dom CMet) |
| 29 | | trfg 23899 |
. . . . . . . . 9
⊢ ((𝑓 ∈ (Fil‘𝑌) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑋 ∈ dom CMet) → ((𝑋filGen𝑓) ↾t 𝑌) = 𝑓) |
| 30 | 26, 17, 28, 29 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((𝑋filGen𝑓) ↾t 𝑌) = 𝑓) |
| 31 | 30 | eqcomd 2743 |
. . . . . . 7
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 = ((𝑋filGen𝑓) ↾t 𝑌)) |
| 32 | 22, 31 | oveq12d 7449 |
. . . . . 6
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim 𝑓) = ((𝐽 ↾t 𝑌) fLim ((𝑋filGen𝑓) ↾t 𝑌))) |
| 33 | 2 | mopntopon 24449 |
. . . . . . . 8
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 34 | 16, 33 | syl 17 |
. . . . . . 7
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐽 ∈ (TopOn‘𝑋)) |
| 35 | | filfbas 23856 |
. . . . . . . . . 10
⊢ (𝑓 ∈ (Fil‘𝑌) → 𝑓 ∈ (fBas‘𝑌)) |
| 36 | 26, 35 | syl 17 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ∈ (fBas‘𝑌)) |
| 37 | | filsspw 23859 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ (Fil‘𝑌) → 𝑓 ⊆ 𝒫 𝑌) |
| 38 | 26, 37 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ⊆ 𝒫 𝑌) |
| 39 | 17 | sspwd 4613 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝒫 𝑌 ⊆ 𝒫 𝑋) |
| 40 | 38, 39 | sstrd 3994 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ⊆ 𝒫 𝑋) |
| 41 | | fbasweak 23873 |
. . . . . . . . 9
⊢ ((𝑓 ∈ (fBas‘𝑌) ∧ 𝑓 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ dom CMet) → 𝑓 ∈ (fBas‘𝑋)) |
| 42 | 36, 40, 28, 41 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ∈ (fBas‘𝑋)) |
| 43 | | fgcl 23886 |
. . . . . . . 8
⊢ (𝑓 ∈ (fBas‘𝑋) → (𝑋filGen𝑓) ∈ (Fil‘𝑋)) |
| 44 | 42, 43 | syl 17 |
. . . . . . 7
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝑋filGen𝑓) ∈ (Fil‘𝑋)) |
| 45 | | ssfg 23880 |
. . . . . . . . 9
⊢ (𝑓 ∈ (fBas‘𝑋) → 𝑓 ⊆ (𝑋filGen𝑓)) |
| 46 | 42, 45 | syl 17 |
. . . . . . . 8
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ⊆ (𝑋filGen𝑓)) |
| 47 | | filtop 23863 |
. . . . . . . . 9
⊢ (𝑓 ∈ (Fil‘𝑌) → 𝑌 ∈ 𝑓) |
| 48 | 26, 47 | syl 17 |
. . . . . . . 8
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑌 ∈ 𝑓) |
| 49 | 46, 48 | sseldd 3984 |
. . . . . . 7
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑌 ∈ (𝑋filGen𝑓)) |
| 50 | | flimrest 23991 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen𝑓) ∈ (Fil‘𝑋) ∧ 𝑌 ∈ (𝑋filGen𝑓)) → ((𝐽 ↾t 𝑌) fLim ((𝑋filGen𝑓) ↾t 𝑌)) = ((𝐽 fLim (𝑋filGen𝑓)) ∩ 𝑌)) |
| 51 | 34, 44, 49, 50 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((𝐽 ↾t 𝑌) fLim ((𝑋filGen𝑓) ↾t 𝑌)) = ((𝐽 fLim (𝑋filGen𝑓)) ∩ 𝑌)) |
| 52 | | flimclsi 23986 |
. . . . . . . . 9
⊢ (𝑌 ∈ (𝑋filGen𝑓) → (𝐽 fLim (𝑋filGen𝑓)) ⊆ ((cls‘𝐽)‘𝑌)) |
| 53 | 49, 52 | syl 17 |
. . . . . . . 8
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐽 fLim (𝑋filGen𝑓)) ⊆ ((cls‘𝐽)‘𝑌)) |
| 54 | | cldcls 23050 |
. . . . . . . . 9
⊢ (𝑌 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑌) = 𝑌) |
| 55 | 54 | ad2antlr 727 |
. . . . . . . 8
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((cls‘𝐽)‘𝑌) = 𝑌) |
| 56 | 53, 55 | sseqtrd 4020 |
. . . . . . 7
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐽 fLim (𝑋filGen𝑓)) ⊆ 𝑌) |
| 57 | | dfss2 3969 |
. . . . . . 7
⊢ ((𝐽 fLim (𝑋filGen𝑓)) ⊆ 𝑌 ↔ ((𝐽 fLim (𝑋filGen𝑓)) ∩ 𝑌) = (𝐽 fLim (𝑋filGen𝑓))) |
| 58 | 56, 57 | sylib 218 |
. . . . . 6
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((𝐽 fLim (𝑋filGen𝑓)) ∩ 𝑌) = (𝐽 fLim (𝑋filGen𝑓))) |
| 59 | 32, 51, 58 | 3eqtrd 2781 |
. . . . 5
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim 𝑓) = (𝐽 fLim (𝑋filGen𝑓))) |
| 60 | | simpll 767 |
. . . . . 6
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐷 ∈ (CMet‘𝑋)) |
| 61 | 5, 9 | syl 17 |
. . . . . . 7
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐷 ∈ (∞Met‘𝑋)) |
| 62 | | cfilresi 25329 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝑋filGen𝑓) ∈ (CauFil‘𝐷)) |
| 63 | 61, 62 | sylan 580 |
. . . . . 6
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝑋filGen𝑓) ∈ (CauFil‘𝐷)) |
| 64 | 2 | cmetcvg 25319 |
. . . . . 6
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑋filGen𝑓) ∈ (CauFil‘𝐷)) → (𝐽 fLim (𝑋filGen𝑓)) ≠ ∅) |
| 65 | 60, 63, 64 | syl2anc 584 |
. . . . 5
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐽 fLim (𝑋filGen𝑓)) ≠ ∅) |
| 66 | 59, 65 | eqnetrd 3008 |
. . . 4
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim 𝑓) ≠ ∅) |
| 67 | 66 | ralrimiva 3146 |
. . 3
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ∀𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim 𝑓) ≠ ∅) |
| 68 | 19 | iscmet 25318 |
. . 3
⊢ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌) ∧ ∀𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim 𝑓) ≠ ∅)) |
| 69 | 14, 67, 68 | sylanbrc 583 |
. 2
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) |
| 70 | 4, 69 | impbida 801 |
1
⊢ (𝐷 ∈ (CMet‘𝑋) → ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝐽))) |