MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetss Structured version   Visualization version   GIF version

Theorem cmetss 25268
Description: A subspace of a complete metric space is complete iff it is closed in the parent space. Theorem 1.4-7 of [Kreyszig] p. 30. (Contributed by NM, 28-Jan-2008.) (Revised by Mario Carneiro, 15-Oct-2015.) (Proof shortened by AV, 9-Oct-2022.)
Hypothesis
Ref Expression
metsscmetcld.j 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
cmetss (𝐷 ∈ (CMet‘𝑋) → ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝐽)))

Proof of Theorem cmetss
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cmetmet 25238 . . 3 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
2 metsscmetcld.j . . . 4 𝐽 = (MetOpen‘𝐷)
32metsscmetcld 25267 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑌 ∈ (Clsd‘𝐽))
41, 3sylan 580 . 2 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑌 ∈ (Clsd‘𝐽))
51adantr 480 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐷 ∈ (Met‘𝑋))
6 eqid 2735 . . . . . . 7 𝐽 = 𝐽
76cldss 22967 . . . . . 6 (𝑌 ∈ (Clsd‘𝐽) → 𝑌 𝐽)
87adantl 481 . . . . 5 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 𝐽)
9 metxmet 24273 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
102mopnuni 24380 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
115, 9, 103syl 18 . . . . 5 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑋 = 𝐽)
128, 11sseqtrrd 3996 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌𝑋)
13 metres2 24302 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
145, 12, 13syl2anc 584 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
151, 9syl 17 . . . . . . . . . 10 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
1615ad2antrr 726 . . . . . . . . 9 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐷 ∈ (∞Met‘𝑋))
1712adantr 480 . . . . . . . . 9 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑌𝑋)
18 eqid 2735 . . . . . . . . . 10 (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌))
19 eqid 2735 . . . . . . . . . 10 (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))
2018, 2, 19metrest 24463 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
2116, 17, 20syl2anc 584 . . . . . . . 8 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐽t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
2221eqcomd 2741 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (𝐽t 𝑌))
23 metxmet 24273 . . . . . . . . . . 11 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
2414, 23syl 17 . . . . . . . . . 10 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
25 cfilfil 25219 . . . . . . . . . 10 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ∈ (Fil‘𝑌))
2624, 25sylan 580 . . . . . . . . 9 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ∈ (Fil‘𝑌))
27 elfvdm 6913 . . . . . . . . . 10 (𝐷 ∈ (CMet‘𝑋) → 𝑋 ∈ dom CMet)
2827ad2antrr 726 . . . . . . . . 9 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑋 ∈ dom CMet)
29 trfg 23829 . . . . . . . . 9 ((𝑓 ∈ (Fil‘𝑌) ∧ 𝑌𝑋𝑋 ∈ dom CMet) → ((𝑋filGen𝑓) ↾t 𝑌) = 𝑓)
3026, 17, 28, 29syl3anc 1373 . . . . . . . 8 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((𝑋filGen𝑓) ↾t 𝑌) = 𝑓)
3130eqcomd 2741 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 = ((𝑋filGen𝑓) ↾t 𝑌))
3222, 31oveq12d 7423 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim 𝑓) = ((𝐽t 𝑌) fLim ((𝑋filGen𝑓) ↾t 𝑌)))
332mopntopon 24378 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
3416, 33syl 17 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐽 ∈ (TopOn‘𝑋))
35 filfbas 23786 . . . . . . . . . 10 (𝑓 ∈ (Fil‘𝑌) → 𝑓 ∈ (fBas‘𝑌))
3626, 35syl 17 . . . . . . . . 9 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ∈ (fBas‘𝑌))
37 filsspw 23789 . . . . . . . . . . 11 (𝑓 ∈ (Fil‘𝑌) → 𝑓 ⊆ 𝒫 𝑌)
3826, 37syl 17 . . . . . . . . . 10 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ⊆ 𝒫 𝑌)
3917sspwd 4588 . . . . . . . . . 10 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝒫 𝑌 ⊆ 𝒫 𝑋)
4038, 39sstrd 3969 . . . . . . . . 9 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ⊆ 𝒫 𝑋)
41 fbasweak 23803 . . . . . . . . 9 ((𝑓 ∈ (fBas‘𝑌) ∧ 𝑓 ⊆ 𝒫 𝑋𝑋 ∈ dom CMet) → 𝑓 ∈ (fBas‘𝑋))
4236, 40, 28, 41syl3anc 1373 . . . . . . . 8 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ∈ (fBas‘𝑋))
43 fgcl 23816 . . . . . . . 8 (𝑓 ∈ (fBas‘𝑋) → (𝑋filGen𝑓) ∈ (Fil‘𝑋))
4442, 43syl 17 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝑋filGen𝑓) ∈ (Fil‘𝑋))
45 ssfg 23810 . . . . . . . . 9 (𝑓 ∈ (fBas‘𝑋) → 𝑓 ⊆ (𝑋filGen𝑓))
4642, 45syl 17 . . . . . . . 8 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑓 ⊆ (𝑋filGen𝑓))
47 filtop 23793 . . . . . . . . 9 (𝑓 ∈ (Fil‘𝑌) → 𝑌𝑓)
4826, 47syl 17 . . . . . . . 8 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑌𝑓)
4946, 48sseldd 3959 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝑌 ∈ (𝑋filGen𝑓))
50 flimrest 23921 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋filGen𝑓) ∈ (Fil‘𝑋) ∧ 𝑌 ∈ (𝑋filGen𝑓)) → ((𝐽t 𝑌) fLim ((𝑋filGen𝑓) ↾t 𝑌)) = ((𝐽 fLim (𝑋filGen𝑓)) ∩ 𝑌))
5134, 44, 49, 50syl3anc 1373 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((𝐽t 𝑌) fLim ((𝑋filGen𝑓) ↾t 𝑌)) = ((𝐽 fLim (𝑋filGen𝑓)) ∩ 𝑌))
52 flimclsi 23916 . . . . . . . . 9 (𝑌 ∈ (𝑋filGen𝑓) → (𝐽 fLim (𝑋filGen𝑓)) ⊆ ((cls‘𝐽)‘𝑌))
5349, 52syl 17 . . . . . . . 8 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐽 fLim (𝑋filGen𝑓)) ⊆ ((cls‘𝐽)‘𝑌))
54 cldcls 22980 . . . . . . . . 9 (𝑌 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑌) = 𝑌)
5554ad2antlr 727 . . . . . . . 8 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((cls‘𝐽)‘𝑌) = 𝑌)
5653, 55sseqtrd 3995 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐽 fLim (𝑋filGen𝑓)) ⊆ 𝑌)
57 dfss2 3944 . . . . . . 7 ((𝐽 fLim (𝑋filGen𝑓)) ⊆ 𝑌 ↔ ((𝐽 fLim (𝑋filGen𝑓)) ∩ 𝑌) = (𝐽 fLim (𝑋filGen𝑓)))
5856, 57sylib 218 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((𝐽 fLim (𝑋filGen𝑓)) ∩ 𝑌) = (𝐽 fLim (𝑋filGen𝑓)))
5932, 51, 583eqtrd 2774 . . . . 5 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim 𝑓) = (𝐽 fLim (𝑋filGen𝑓)))
60 simpll 766 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐷 ∈ (CMet‘𝑋))
615, 9syl 17 . . . . . . 7 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐷 ∈ (∞Met‘𝑋))
62 cfilresi 25247 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝑋filGen𝑓) ∈ (CauFil‘𝐷))
6361, 62sylan 580 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝑋filGen𝑓) ∈ (CauFil‘𝐷))
642cmetcvg 25237 . . . . . 6 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑋filGen𝑓) ∈ (CauFil‘𝐷)) → (𝐽 fLim (𝑋filGen𝑓)) ≠ ∅)
6560, 63, 64syl2anc 584 . . . . 5 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐽 fLim (𝑋filGen𝑓)) ≠ ∅)
6659, 65eqnetrd 2999 . . . 4 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim 𝑓) ≠ ∅)
6766ralrimiva 3132 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ∀𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim 𝑓) ≠ ∅)
6819iscmet 25236 . . 3 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌) ∧ ∀𝑓 ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim 𝑓) ≠ ∅))
6914, 67, 68sylanbrc 583 . 2 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
704, 69impbida 800 1 (𝐷 ∈ (CMet‘𝑋) → ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575   cuni 4883   × cxp 5652  dom cdm 5654  cres 5656  cfv 6531  (class class class)co 7405  t crest 17434  ∞Metcxmet 21300  Metcmet 21301  fBascfbas 21303  filGencfg 21304  MetOpencmopn 21305  TopOnctopon 22848  Clsdccld 22954  clsccl 22956  Filcfil 23783   fLim cflim 23872  CauFilccfil 25204  CMetccmet 25206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fi 9423  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ico 13368  df-icc 13369  df-rest 17436  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-top 22832  df-topon 22849  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-haus 23253  df-fil 23784  df-flim 23877  df-cfil 25207  df-cmet 25209
This theorem is referenced by:  recmet  25275  cmsss  25303  cmscsscms  25325  bnsscmcl  30849  rrnheibor  37861
  Copyright terms: Public domain W3C validator