Step | Hyp | Ref
| Expression |
1 | | simpr 485 |
. . . . . 6
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → 𝐹 ∈ (𝐴–cn→𝐵)) |
2 | | cncfrss 24050 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) |
3 | 2 | adantl 482 |
. . . . . . 7
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → 𝐴 ⊆ ℂ) |
4 | | cncfrss2 24051 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) |
5 | 4 | adantl 482 |
. . . . . . 7
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → 𝐵 ⊆ ℂ) |
6 | | elcncf 24048 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) |
7 | 3, 5, 6 | syl2anc 584 |
. . . . . 6
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) |
8 | 1, 7 | mpbid 231 |
. . . . 5
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
9 | 8 | simpld 495 |
. . . 4
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → 𝐹:𝐴⟶𝐵) |
10 | | simpl 483 |
. . . 4
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → 𝐶 ⊆ 𝐴) |
11 | 9, 10 | fssresd 6638 |
. . 3
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
12 | 8 | simprd 496 |
. . . 4
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
13 | | ssralv 3992 |
. . . . 5
⊢ (𝐶 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦) → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
14 | | ssralv 3992 |
. . . . . . . . 9
⊢ (𝐶 ⊆ 𝐴 → (∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦) → ∀𝑤 ∈ 𝐶 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
15 | | fvres 6788 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) |
16 | | fvres 6788 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑤) = (𝐹‘𝑤)) |
17 | 15, 16 | oveqan12d 7288 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶) → (((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤)) = ((𝐹‘𝑥) − (𝐹‘𝑤))) |
18 | 17 | fveq2d 6773 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶) → (abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) = (abs‘((𝐹‘𝑥) − (𝐹‘𝑤)))) |
19 | 18 | breq1d 5089 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶) → ((abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) < 𝑦 ↔ (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
20 | 19 | imbi2d 341 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶) → (((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) < 𝑦) ↔ ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
21 | 20 | biimprd 247 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶) → (((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦) → ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) < 𝑦))) |
22 | 21 | ralimdva 3105 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐶 → (∀𝑤 ∈ 𝐶 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦) → ∀𝑤 ∈ 𝐶 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) < 𝑦))) |
23 | 14, 22 | sylan9 508 |
. . . . . . . 8
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝑥 ∈ 𝐶) → (∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦) → ∀𝑤 ∈ 𝐶 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) < 𝑦))) |
24 | 23 | reximdv 3204 |
. . . . . . 7
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝑥 ∈ 𝐶) → (∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐶 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) < 𝑦))) |
25 | 24 | ralimdv 3106 |
. . . . . 6
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝑥 ∈ 𝐶) → (∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦) → ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐶 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) < 𝑦))) |
26 | 25 | ralimdva 3105 |
. . . . 5
⊢ (𝐶 ⊆ 𝐴 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦) → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐶 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) < 𝑦))) |
27 | 13, 26 | syld 47 |
. . . 4
⊢ (𝐶 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦) → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐶 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) < 𝑦))) |
28 | 10, 12, 27 | sylc 65 |
. . 3
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐶 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) < 𝑦)) |
29 | 10, 3 | sstrd 3936 |
. . . 4
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → 𝐶 ⊆ ℂ) |
30 | | elcncf 24048 |
. . . 4
⊢ ((𝐶 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝐹 ↾ 𝐶) ∈ (𝐶–cn→𝐵) ↔ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐶 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) < 𝑦)))) |
31 | 29, 5, 30 | syl2anc 584 |
. . 3
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → ((𝐹 ↾ 𝐶) ∈ (𝐶–cn→𝐵) ↔ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐶 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) < 𝑦)))) |
32 | 11, 28, 31 | mpbir2and 710 |
. 2
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → (𝐹 ↾ 𝐶) ∈ (𝐶–cn→𝐵)) |
33 | 32 | ex 413 |
1
⊢ (𝐶 ⊆ 𝐴 → (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹 ↾ 𝐶) ∈ (𝐶–cn→𝐵))) |