MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescncf Structured version   Visualization version   GIF version

Theorem rescncf 24060
Description: A continuous complex function restricted to a subset is continuous. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
rescncf (𝐶𝐴 → (𝐹 ∈ (𝐴cn𝐵) → (𝐹𝐶) ∈ (𝐶cn𝐵)))

Proof of Theorem rescncf
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . 6 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐹 ∈ (𝐴cn𝐵))
2 cncfrss 24054 . . . . . . . 8 (𝐹 ∈ (𝐴cn𝐵) → 𝐴 ⊆ ℂ)
32adantl 482 . . . . . . 7 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐴 ⊆ ℂ)
4 cncfrss2 24055 . . . . . . . 8 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ⊆ ℂ)
54adantl 482 . . . . . . 7 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐵 ⊆ ℂ)
6 elcncf 24052 . . . . . . 7 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
73, 5, 6syl2anc 584 . . . . . 6 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
81, 7mpbid 231 . . . . 5 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
98simpld 495 . . . 4 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐹:𝐴𝐵)
10 simpl 483 . . . 4 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐶𝐴)
119, 10fssresd 6641 . . 3 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → (𝐹𝐶):𝐶𝐵)
128simprd 496 . . . 4 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
13 ssralv 3987 . . . . 5 (𝐶𝐴 → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
14 ssralv 3987 . . . . . . . . 9 (𝐶𝐴 → (∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
15 fvres 6793 . . . . . . . . . . . . . . 15 (𝑥𝐶 → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
16 fvres 6793 . . . . . . . . . . . . . . 15 (𝑤𝐶 → ((𝐹𝐶)‘𝑤) = (𝐹𝑤))
1715, 16oveqan12d 7294 . . . . . . . . . . . . . 14 ((𝑥𝐶𝑤𝐶) → (((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤)) = ((𝐹𝑥) − (𝐹𝑤)))
1817fveq2d 6778 . . . . . . . . . . . . 13 ((𝑥𝐶𝑤𝐶) → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) = (abs‘((𝐹𝑥) − (𝐹𝑤))))
1918breq1d 5084 . . . . . . . . . . . 12 ((𝑥𝐶𝑤𝐶) → ((abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦 ↔ (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
2019imbi2d 341 . . . . . . . . . . 11 ((𝑥𝐶𝑤𝐶) → (((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦) ↔ ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
2120biimprd 247 . . . . . . . . . 10 ((𝑥𝐶𝑤𝐶) → (((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2221ralimdva 3108 . . . . . . . . 9 (𝑥𝐶 → (∀𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2314, 22sylan9 508 . . . . . . . 8 ((𝐶𝐴𝑥𝐶) → (∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2423reximdv 3202 . . . . . . 7 ((𝐶𝐴𝑥𝐶) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∃𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2524ralimdv 3109 . . . . . 6 ((𝐶𝐴𝑥𝐶) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2625ralimdva 3108 . . . . 5 (𝐶𝐴 → (∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2713, 26syld 47 . . . 4 (𝐶𝐴 → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2810, 12, 27sylc 65 . . 3 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦))
2910, 3sstrd 3931 . . . 4 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐶 ⊆ ℂ)
30 elcncf 24052 . . . 4 ((𝐶 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝐹𝐶) ∈ (𝐶cn𝐵) ↔ ((𝐹𝐶):𝐶𝐵 ∧ ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦))))
3129, 5, 30syl2anc 584 . . 3 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → ((𝐹𝐶) ∈ (𝐶cn𝐵) ↔ ((𝐹𝐶):𝐶𝐵 ∧ ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦))))
3211, 28, 31mpbir2and 710 . 2 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → (𝐹𝐶) ∈ (𝐶cn𝐵))
3332ex 413 1 (𝐶𝐴 → (𝐹 ∈ (𝐴cn𝐵) → (𝐹𝐶) ∈ (𝐶cn𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wral 3064  wrex 3065  wss 3887   class class class wbr 5074  cres 5591  wf 6429  cfv 6433  (class class class)co 7275  cc 10869   < clt 11009  cmin 11205  +crp 12730  abscabs 14945  cnccncf 24039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-cncf 24041
This theorem is referenced by:  cpnres  25101  dvlip  25157  dvlip2  25159  c1liplem1  25160  c1lip2  25162  dvgt0lem1  25166  dvivthlem1  25172  dvne0  25175  lhop1lem  25177  dvcnvrelem1  25181  dvcnvrelem2  25182  dvcvx  25184  dvfsumle  25185  dvfsumabs  25187  dvfsumlem2  25191  ftc2ditglem  25209  itgparts  25211  itgsubstlem  25212  itgpowd  25214  psercn2  25582  abelth  25600  abelth2  25601  efcvx  25608  pige3ALT  25676  dvrelog  25792  logcn  25802  logccv  25818  loglesqrt  25911  rpsqrtcn  32573  cxpcncf1  32575  ftc2re  32578  fdvposlt  32579  fdvposle  32581  itgexpif  32586  ftc1cnnclem  35848  ftc2nc  35859  areacirc  35870  cncfres  35923  resopunitintvd  40034  resclunitintvd  40035  lcmineqlem2  40038  aks4d1p1p5  40083  areaquad  41047  lhe4.4ex1a  41947  cncfmptss  43128  resincncf  43416  dvbdfbdioolem1  43469  itgsbtaddcnst  43523  fourierdlem38  43686  fourierdlem46  43693  fourierdlem72  43719  fourierdlem90  43737  fourierdlem111  43758  fouriercn  43773
  Copyright terms: Public domain W3C validator