MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescncf Structured version   Visualization version   GIF version

Theorem rescncf 23108
Description: A continuous complex function restricted to a subset is continuous. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
rescncf (𝐶𝐴 → (𝐹 ∈ (𝐴cn𝐵) → (𝐹𝐶) ∈ (𝐶cn𝐵)))

Proof of Theorem rescncf
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 479 . . . . . 6 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐹 ∈ (𝐴cn𝐵))
2 cncfrss 23102 . . . . . . . 8 (𝐹 ∈ (𝐴cn𝐵) → 𝐴 ⊆ ℂ)
32adantl 475 . . . . . . 7 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐴 ⊆ ℂ)
4 cncfrss2 23103 . . . . . . . 8 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ⊆ ℂ)
54adantl 475 . . . . . . 7 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐵 ⊆ ℂ)
6 elcncf 23100 . . . . . . 7 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
73, 5, 6syl2anc 579 . . . . . 6 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
81, 7mpbid 224 . . . . 5 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
98simpld 490 . . . 4 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐹:𝐴𝐵)
10 simpl 476 . . . 4 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐶𝐴)
119, 10fssresd 6321 . . 3 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → (𝐹𝐶):𝐶𝐵)
128simprd 491 . . . 4 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
13 ssralv 3885 . . . . 5 (𝐶𝐴 → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
14 ssralv 3885 . . . . . . . . 9 (𝐶𝐴 → (∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
15 fvres 6465 . . . . . . . . . . . . . . 15 (𝑥𝐶 → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
16 fvres 6465 . . . . . . . . . . . . . . 15 (𝑤𝐶 → ((𝐹𝐶)‘𝑤) = (𝐹𝑤))
1715, 16oveqan12d 6941 . . . . . . . . . . . . . 14 ((𝑥𝐶𝑤𝐶) → (((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤)) = ((𝐹𝑥) − (𝐹𝑤)))
1817fveq2d 6450 . . . . . . . . . . . . 13 ((𝑥𝐶𝑤𝐶) → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) = (abs‘((𝐹𝑥) − (𝐹𝑤))))
1918breq1d 4896 . . . . . . . . . . . 12 ((𝑥𝐶𝑤𝐶) → ((abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦 ↔ (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
2019imbi2d 332 . . . . . . . . . . 11 ((𝑥𝐶𝑤𝐶) → (((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦) ↔ ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
2120biimprd 240 . . . . . . . . . 10 ((𝑥𝐶𝑤𝐶) → (((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2221ralimdva 3144 . . . . . . . . 9 (𝑥𝐶 → (∀𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2314, 22sylan9 503 . . . . . . . 8 ((𝐶𝐴𝑥𝐶) → (∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2423reximdv 3197 . . . . . . 7 ((𝐶𝐴𝑥𝐶) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∃𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2524ralimdv 3145 . . . . . 6 ((𝐶𝐴𝑥𝐶) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2625ralimdva 3144 . . . . 5 (𝐶𝐴 → (∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2713, 26syld 47 . . . 4 (𝐶𝐴 → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2810, 12, 27sylc 65 . . 3 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦))
2910, 3sstrd 3831 . . . 4 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐶 ⊆ ℂ)
30 elcncf 23100 . . . 4 ((𝐶 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝐹𝐶) ∈ (𝐶cn𝐵) ↔ ((𝐹𝐶):𝐶𝐵 ∧ ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦))))
3129, 5, 30syl2anc 579 . . 3 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → ((𝐹𝐶) ∈ (𝐶cn𝐵) ↔ ((𝐹𝐶):𝐶𝐵 ∧ ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦))))
3211, 28, 31mpbir2and 703 . 2 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → (𝐹𝐶) ∈ (𝐶cn𝐵))
3332ex 403 1 (𝐶𝐴 → (𝐹 ∈ (𝐴cn𝐵) → (𝐹𝐶) ∈ (𝐶cn𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wcel 2107  wral 3090  wrex 3091  wss 3792   class class class wbr 4886  cres 5357  wf 6131  cfv 6135  (class class class)co 6922  cc 10270   < clt 10411  cmin 10606  +crp 12137  abscabs 14381  cnccncf 23087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-map 8142  df-cncf 23089
This theorem is referenced by:  cpnres  24137  dvlip  24193  dvlip2  24195  c1liplem1  24196  c1lip2  24198  dvgt0lem1  24202  dvivthlem1  24208  dvne0  24211  lhop1lem  24213  dvcnvrelem1  24217  dvcnvrelem2  24218  dvcvx  24220  dvfsumle  24221  dvfsumabs  24223  dvfsumlem2  24227  ftc2ditglem  24245  itgparts  24247  itgsubstlem  24248  psercn2  24614  abelth  24632  abelth2  24633  efcvx  24640  pige3  24707  dvrelog  24820  logcn  24830  logccv  24846  loglesqrt  24939  rpsqrtcn  31273  cxpcncf1  31275  ftc2re  31278  fdvposlt  31279  fdvposle  31281  itgexpif  31286  ftc1cnnclem  34110  ftc2nc  34121  areacirc  34132  cncfres  34190  itgpowd  38762  areaquad  38764  lhe4.4ex1a  39488  cncfmptss  40731  resincncf  41020  dvbdfbdioolem1  41075  itgsbtaddcnst  41129  fourierdlem38  41293  fourierdlem46  41300  fourierdlem72  41326  fourierdlem90  41344  fourierdlem111  41365  fouriercn  41380
  Copyright terms: Public domain W3C validator