| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . . 6
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → 𝐹 ∈ (𝐴–cn→𝐵)) |
| 2 | | cncfrss 24917 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) |
| 3 | 2 | adantl 481 |
. . . . . . 7
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → 𝐴 ⊆ ℂ) |
| 4 | | cncfrss2 24918 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) |
| 5 | 4 | adantl 481 |
. . . . . . 7
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → 𝐵 ⊆ ℂ) |
| 6 | | elcncf 24915 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) |
| 7 | 3, 5, 6 | syl2anc 584 |
. . . . . 6
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) |
| 8 | 1, 7 | mpbid 232 |
. . . . 5
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
| 9 | 8 | simpld 494 |
. . . 4
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → 𝐹:𝐴⟶𝐵) |
| 10 | | simpl 482 |
. . . 4
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → 𝐶 ⊆ 𝐴) |
| 11 | 9, 10 | fssresd 6775 |
. . 3
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| 12 | 8 | simprd 495 |
. . . 4
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
| 13 | | ssralv 4052 |
. . . . 5
⊢ (𝐶 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦) → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
| 14 | | ssralv 4052 |
. . . . . . . . 9
⊢ (𝐶 ⊆ 𝐴 → (∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦) → ∀𝑤 ∈ 𝐶 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
| 15 | | fvres 6925 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) |
| 16 | | fvres 6925 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑤) = (𝐹‘𝑤)) |
| 17 | 15, 16 | oveqan12d 7450 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶) → (((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤)) = ((𝐹‘𝑥) − (𝐹‘𝑤))) |
| 18 | 17 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶) → (abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) = (abs‘((𝐹‘𝑥) − (𝐹‘𝑤)))) |
| 19 | 18 | breq1d 5153 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶) → ((abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) < 𝑦 ↔ (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
| 20 | 19 | imbi2d 340 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶) → (((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) < 𝑦) ↔ ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
| 21 | 20 | biimprd 248 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶) → (((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦) → ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) < 𝑦))) |
| 22 | 21 | ralimdva 3167 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐶 → (∀𝑤 ∈ 𝐶 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦) → ∀𝑤 ∈ 𝐶 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) < 𝑦))) |
| 23 | 14, 22 | sylan9 507 |
. . . . . . . 8
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝑥 ∈ 𝐶) → (∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦) → ∀𝑤 ∈ 𝐶 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) < 𝑦))) |
| 24 | 23 | reximdv 3170 |
. . . . . . 7
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝑥 ∈ 𝐶) → (∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐶 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) < 𝑦))) |
| 25 | 24 | ralimdv 3169 |
. . . . . 6
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝑥 ∈ 𝐶) → (∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦) → ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐶 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) < 𝑦))) |
| 26 | 25 | ralimdva 3167 |
. . . . 5
⊢ (𝐶 ⊆ 𝐴 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦) → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐶 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) < 𝑦))) |
| 27 | 13, 26 | syld 47 |
. . . 4
⊢ (𝐶 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦) → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐶 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) < 𝑦))) |
| 28 | 10, 12, 27 | sylc 65 |
. . 3
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐶 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) < 𝑦)) |
| 29 | 10, 3 | sstrd 3994 |
. . . 4
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → 𝐶 ⊆ ℂ) |
| 30 | | elcncf 24915 |
. . . 4
⊢ ((𝐶 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝐹 ↾ 𝐶) ∈ (𝐶–cn→𝐵) ↔ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐶 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) < 𝑦)))) |
| 31 | 29, 5, 30 | syl2anc 584 |
. . 3
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → ((𝐹 ↾ 𝐶) ∈ (𝐶–cn→𝐵) ↔ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐶 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘(((𝐹 ↾ 𝐶)‘𝑥) − ((𝐹 ↾ 𝐶)‘𝑤))) < 𝑦)))) |
| 32 | 11, 28, 31 | mpbir2and 713 |
. 2
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → (𝐹 ↾ 𝐶) ∈ (𝐶–cn→𝐵)) |
| 33 | 32 | ex 412 |
1
⊢ (𝐶 ⊆ 𝐴 → (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹 ↾ 𝐶) ∈ (𝐶–cn→𝐵))) |