MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescncf Structured version   Visualization version   GIF version

Theorem rescncf 24923
Description: A continuous complex function restricted to a subset is continuous. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
rescncf (𝐶𝐴 → (𝐹 ∈ (𝐴cn𝐵) → (𝐹𝐶) ∈ (𝐶cn𝐵)))

Proof of Theorem rescncf
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐹 ∈ (𝐴cn𝐵))
2 cncfrss 24917 . . . . . . . 8 (𝐹 ∈ (𝐴cn𝐵) → 𝐴 ⊆ ℂ)
32adantl 481 . . . . . . 7 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐴 ⊆ ℂ)
4 cncfrss2 24918 . . . . . . . 8 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ⊆ ℂ)
54adantl 481 . . . . . . 7 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐵 ⊆ ℂ)
6 elcncf 24915 . . . . . . 7 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
73, 5, 6syl2anc 584 . . . . . 6 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
81, 7mpbid 232 . . . . 5 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
98simpld 494 . . . 4 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐹:𝐴𝐵)
10 simpl 482 . . . 4 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐶𝐴)
119, 10fssresd 6775 . . 3 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → (𝐹𝐶):𝐶𝐵)
128simprd 495 . . . 4 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
13 ssralv 4052 . . . . 5 (𝐶𝐴 → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
14 ssralv 4052 . . . . . . . . 9 (𝐶𝐴 → (∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
15 fvres 6925 . . . . . . . . . . . . . . 15 (𝑥𝐶 → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
16 fvres 6925 . . . . . . . . . . . . . . 15 (𝑤𝐶 → ((𝐹𝐶)‘𝑤) = (𝐹𝑤))
1715, 16oveqan12d 7450 . . . . . . . . . . . . . 14 ((𝑥𝐶𝑤𝐶) → (((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤)) = ((𝐹𝑥) − (𝐹𝑤)))
1817fveq2d 6910 . . . . . . . . . . . . 13 ((𝑥𝐶𝑤𝐶) → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) = (abs‘((𝐹𝑥) − (𝐹𝑤))))
1918breq1d 5153 . . . . . . . . . . . 12 ((𝑥𝐶𝑤𝐶) → ((abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦 ↔ (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
2019imbi2d 340 . . . . . . . . . . 11 ((𝑥𝐶𝑤𝐶) → (((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦) ↔ ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
2120biimprd 248 . . . . . . . . . 10 ((𝑥𝐶𝑤𝐶) → (((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2221ralimdva 3167 . . . . . . . . 9 (𝑥𝐶 → (∀𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2314, 22sylan9 507 . . . . . . . 8 ((𝐶𝐴𝑥𝐶) → (∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2423reximdv 3170 . . . . . . 7 ((𝐶𝐴𝑥𝐶) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∃𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2524ralimdv 3169 . . . . . 6 ((𝐶𝐴𝑥𝐶) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2625ralimdva 3167 . . . . 5 (𝐶𝐴 → (∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2713, 26syld 47 . . . 4 (𝐶𝐴 → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2810, 12, 27sylc 65 . . 3 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦))
2910, 3sstrd 3994 . . . 4 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐶 ⊆ ℂ)
30 elcncf 24915 . . . 4 ((𝐶 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝐹𝐶) ∈ (𝐶cn𝐵) ↔ ((𝐹𝐶):𝐶𝐵 ∧ ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦))))
3129, 5, 30syl2anc 584 . . 3 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → ((𝐹𝐶) ∈ (𝐶cn𝐵) ↔ ((𝐹𝐶):𝐶𝐵 ∧ ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦))))
3211, 28, 31mpbir2and 713 . 2 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → (𝐹𝐶) ∈ (𝐶cn𝐵))
3332ex 412 1 (𝐶𝐴 → (𝐹 ∈ (𝐴cn𝐵) → (𝐹𝐶) ∈ (𝐶cn𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3061  wrex 3070  wss 3951   class class class wbr 5143  cres 5687  wf 6557  cfv 6561  (class class class)co 7431  cc 11153   < clt 11295  cmin 11492  +crp 13034  abscabs 15273  cnccncf 24902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8868  df-cncf 24904
This theorem is referenced by:  cpnres  25973  dvlip  26032  dvlip2  26034  c1liplem1  26035  c1lip2  26037  dvgt0lem1  26041  dvivthlem1  26047  dvne0  26050  lhop1lem  26052  dvcnvrelem1  26056  dvcnvrelem2  26057  dvcvx  26059  dvfsumle  26060  dvfsumleOLD  26061  dvfsumabs  26063  dvfsumlem2  26067  dvfsumlem2OLD  26068  ftc2ditglem  26086  itgparts  26088  itgsubstlem  26089  itgpowd  26091  psercn2  26466  psercn2OLD  26467  abelth  26485  abelth2  26486  efcvx  26493  pige3ALT  26562  dvrelog  26679  logcn  26689  logccv  26705  loglesqrt  26804  rpsqrtcn  34608  cxpcncf1  34610  ftc2re  34613  fdvposlt  34614  fdvposle  34616  itgexpif  34621  ftc1cnnclem  37698  ftc2nc  37709  areacirc  37720  cncfres  37772  resopunitintvd  42027  resclunitintvd  42028  lcmineqlem2  42031  aks4d1p1p5  42076  areaquad  43228  lhe4.4ex1a  44348  cncfmptss  45602  resincncf  45890  dvbdfbdioolem1  45943  itgsbtaddcnst  45997  fourierdlem38  46160  fourierdlem46  46167  fourierdlem72  46193  fourierdlem90  46211  fourierdlem111  46232  fouriercn  46247
  Copyright terms: Public domain W3C validator