MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfi Structured version   Visualization version   GIF version

Theorem cncfi 24815
Description: Defining property of a continuous function. (Contributed by Mario Carneiro, 30-Apr-2014.) (Revised by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncfi ((𝐹 ∈ (𝐴cn𝐵) ∧ 𝐶𝐴𝑅 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅))
Distinct variable groups:   𝑧,𝑤,𝐴   𝑤,𝐶,𝑧   𝑤,𝐹,𝑧   𝑤,𝑅,𝑧   𝑤,𝐵,𝑧

Proof of Theorem cncfi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfrss 24812 . . . . . 6 (𝐹 ∈ (𝐴cn𝐵) → 𝐴 ⊆ ℂ)
2 cncfrss2 24813 . . . . . 6 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ⊆ ℂ)
3 elcncf2 24811 . . . . . 6 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
41, 2, 3syl2anc 584 . . . . 5 (𝐹 ∈ (𝐴cn𝐵) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
54ibi 267 . . . 4 (𝐹 ∈ (𝐴cn𝐵) → (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦)))
65simprd 495 . . 3 (𝐹 ∈ (𝐴cn𝐵) → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))
7 oveq2 7360 . . . . . . . 8 (𝑥 = 𝐶 → (𝑤𝑥) = (𝑤𝐶))
87fveq2d 6832 . . . . . . 7 (𝑥 = 𝐶 → (abs‘(𝑤𝑥)) = (abs‘(𝑤𝐶)))
98breq1d 5103 . . . . . 6 (𝑥 = 𝐶 → ((abs‘(𝑤𝑥)) < 𝑧 ↔ (abs‘(𝑤𝐶)) < 𝑧))
10 fveq2 6828 . . . . . . . . 9 (𝑥 = 𝐶 → (𝐹𝑥) = (𝐹𝐶))
1110oveq2d 7368 . . . . . . . 8 (𝑥 = 𝐶 → ((𝐹𝑤) − (𝐹𝑥)) = ((𝐹𝑤) − (𝐹𝐶)))
1211fveq2d 6832 . . . . . . 7 (𝑥 = 𝐶 → (abs‘((𝐹𝑤) − (𝐹𝑥))) = (abs‘((𝐹𝑤) − (𝐹𝐶))))
1312breq1d 5103 . . . . . 6 (𝑥 = 𝐶 → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦 ↔ (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑦))
149, 13imbi12d 344 . . . . 5 (𝑥 = 𝐶 → (((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦) ↔ ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑦)))
1514rexralbidv 3199 . . . 4 (𝑥 = 𝐶 → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑦)))
16 breq2 5097 . . . . . 6 (𝑦 = 𝑅 → ((abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑦 ↔ (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅))
1716imbi2d 340 . . . . 5 (𝑦 = 𝑅 → (((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑦) ↔ ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅)))
1817rexralbidv 3199 . . . 4 (𝑦 = 𝑅 → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅)))
1915, 18rspc2v 3584 . . 3 ((𝐶𝐴𝑅 ∈ ℝ+) → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅)))
206, 19mpan9 506 . 2 ((𝐹 ∈ (𝐴cn𝐵) ∧ (𝐶𝐴𝑅 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅))
21203impb 1114 1 ((𝐹 ∈ (𝐴cn𝐵) ∧ 𝐶𝐴𝑅 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wrex 3057  wss 3898   class class class wbr 5093  wf 6482  cfv 6486  (class class class)co 7352  cc 11011   < clt 11153  cmin 11351  +crp 12892  abscabs 15143  cnccncf 24797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-cj 15008  df-re 15009  df-im 15010  df-abs 15145  df-cncf 24799
This theorem is referenced by:  cncfcdm  24819  climcncf  24821  cncfco  24828  ivthlem2  25381  ivthlem3  25382  ulmcn  26336  pntlem3  27548  sinccvglem  35737  itg2gt0cn  37735
  Copyright terms: Public domain W3C validator