MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfi Structured version   Visualization version   GIF version

Theorem cncfi 24106
Description: Defining property of a continuous function. (Contributed by Mario Carneiro, 30-Apr-2014.) (Revised by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncfi ((𝐹 ∈ (𝐴cn𝐵) ∧ 𝐶𝐴𝑅 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅))
Distinct variable groups:   𝑧,𝑤,𝐴   𝑤,𝐶,𝑧   𝑤,𝐹,𝑧   𝑤,𝑅,𝑧   𝑤,𝐵,𝑧

Proof of Theorem cncfi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfrss 24103 . . . . . 6 (𝐹 ∈ (𝐴cn𝐵) → 𝐴 ⊆ ℂ)
2 cncfrss2 24104 . . . . . 6 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ⊆ ℂ)
3 elcncf2 24102 . . . . . 6 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
41, 2, 3syl2anc 585 . . . . 5 (𝐹 ∈ (𝐴cn𝐵) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
54ibi 267 . . . 4 (𝐹 ∈ (𝐴cn𝐵) → (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦)))
65simprd 497 . . 3 (𝐹 ∈ (𝐴cn𝐵) → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))
7 oveq2 7315 . . . . . . . 8 (𝑥 = 𝐶 → (𝑤𝑥) = (𝑤𝐶))
87fveq2d 6808 . . . . . . 7 (𝑥 = 𝐶 → (abs‘(𝑤𝑥)) = (abs‘(𝑤𝐶)))
98breq1d 5091 . . . . . 6 (𝑥 = 𝐶 → ((abs‘(𝑤𝑥)) < 𝑧 ↔ (abs‘(𝑤𝐶)) < 𝑧))
10 fveq2 6804 . . . . . . . . 9 (𝑥 = 𝐶 → (𝐹𝑥) = (𝐹𝐶))
1110oveq2d 7323 . . . . . . . 8 (𝑥 = 𝐶 → ((𝐹𝑤) − (𝐹𝑥)) = ((𝐹𝑤) − (𝐹𝐶)))
1211fveq2d 6808 . . . . . . 7 (𝑥 = 𝐶 → (abs‘((𝐹𝑤) − (𝐹𝑥))) = (abs‘((𝐹𝑤) − (𝐹𝐶))))
1312breq1d 5091 . . . . . 6 (𝑥 = 𝐶 → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦 ↔ (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑦))
149, 13imbi12d 345 . . . . 5 (𝑥 = 𝐶 → (((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦) ↔ ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑦)))
1514rexralbidv 3211 . . . 4 (𝑥 = 𝐶 → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑦)))
16 breq2 5085 . . . . . 6 (𝑦 = 𝑅 → ((abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑦 ↔ (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅))
1716imbi2d 341 . . . . 5 (𝑦 = 𝑅 → (((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑦) ↔ ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅)))
1817rexralbidv 3211 . . . 4 (𝑦 = 𝑅 → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅)))
1915, 18rspc2v 3575 . . 3 ((𝐶𝐴𝑅 ∈ ℝ+) → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅)))
206, 19mpan9 508 . 2 ((𝐹 ∈ (𝐴cn𝐵) ∧ (𝐶𝐴𝑅 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅))
21203impb 1115 1 ((𝐹 ∈ (𝐴cn𝐵) ∧ 𝐶𝐴𝑅 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1539  wcel 2104  wral 3062  wrex 3071  wss 3892   class class class wbr 5081  wf 6454  cfv 6458  (class class class)co 7307  cc 10919   < clt 11059  cmin 11255  +crp 12780  abscabs 14994  cnccncf 24088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-div 11683  df-2 12086  df-cj 14859  df-re 14860  df-im 14861  df-abs 14996  df-cncf 24090
This theorem is referenced by:  cncfcdm  24110  climcncf  24112  cncfco  24119  ivthlem2  24665  ivthlem3  24666  ulmcn  25607  pntlem3  26806  sinccvglem  33679  itg2gt0cn  35880
  Copyright terms: Public domain W3C validator