MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfi Structured version   Visualization version   GIF version

Theorem cncfi 24794
Description: Defining property of a continuous function. (Contributed by Mario Carneiro, 30-Apr-2014.) (Revised by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncfi ((𝐹 ∈ (𝐴cn𝐵) ∧ 𝐶𝐴𝑅 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅))
Distinct variable groups:   𝑧,𝑤,𝐴   𝑤,𝐶,𝑧   𝑤,𝐹,𝑧   𝑤,𝑅,𝑧   𝑤,𝐵,𝑧

Proof of Theorem cncfi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfrss 24791 . . . . . 6 (𝐹 ∈ (𝐴cn𝐵) → 𝐴 ⊆ ℂ)
2 cncfrss2 24792 . . . . . 6 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ⊆ ℂ)
3 elcncf2 24790 . . . . . 6 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
41, 2, 3syl2anc 584 . . . . 5 (𝐹 ∈ (𝐴cn𝐵) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
54ibi 267 . . . 4 (𝐹 ∈ (𝐴cn𝐵) → (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦)))
65simprd 495 . . 3 (𝐹 ∈ (𝐴cn𝐵) → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))
7 oveq2 7398 . . . . . . . 8 (𝑥 = 𝐶 → (𝑤𝑥) = (𝑤𝐶))
87fveq2d 6865 . . . . . . 7 (𝑥 = 𝐶 → (abs‘(𝑤𝑥)) = (abs‘(𝑤𝐶)))
98breq1d 5120 . . . . . 6 (𝑥 = 𝐶 → ((abs‘(𝑤𝑥)) < 𝑧 ↔ (abs‘(𝑤𝐶)) < 𝑧))
10 fveq2 6861 . . . . . . . . 9 (𝑥 = 𝐶 → (𝐹𝑥) = (𝐹𝐶))
1110oveq2d 7406 . . . . . . . 8 (𝑥 = 𝐶 → ((𝐹𝑤) − (𝐹𝑥)) = ((𝐹𝑤) − (𝐹𝐶)))
1211fveq2d 6865 . . . . . . 7 (𝑥 = 𝐶 → (abs‘((𝐹𝑤) − (𝐹𝑥))) = (abs‘((𝐹𝑤) − (𝐹𝐶))))
1312breq1d 5120 . . . . . 6 (𝑥 = 𝐶 → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦 ↔ (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑦))
149, 13imbi12d 344 . . . . 5 (𝑥 = 𝐶 → (((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦) ↔ ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑦)))
1514rexralbidv 3204 . . . 4 (𝑥 = 𝐶 → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑦)))
16 breq2 5114 . . . . . 6 (𝑦 = 𝑅 → ((abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑦 ↔ (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅))
1716imbi2d 340 . . . . 5 (𝑦 = 𝑅 → (((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑦) ↔ ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅)))
1817rexralbidv 3204 . . . 4 (𝑦 = 𝑅 → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅)))
1915, 18rspc2v 3602 . . 3 ((𝐶𝐴𝑅 ∈ ℝ+) → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅)))
206, 19mpan9 506 . 2 ((𝐹 ∈ (𝐴cn𝐵) ∧ (𝐶𝐴𝑅 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅))
21203impb 1114 1 ((𝐹 ∈ (𝐴cn𝐵) ∧ 𝐶𝐴𝑅 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  cc 11073   < clt 11215  cmin 11412  +crp 12958  abscabs 15207  cnccncf 24776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-cj 15072  df-re 15073  df-im 15074  df-abs 15209  df-cncf 24778
This theorem is referenced by:  cncfcdm  24798  climcncf  24800  cncfco  24807  ivthlem2  25360  ivthlem3  25361  ulmcn  26315  pntlem3  27527  sinccvglem  35666  itg2gt0cn  37676
  Copyright terms: Public domain W3C validator