![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cncfi | Structured version Visualization version GIF version |
Description: Defining property of a continuous function. (Contributed by Mario Carneiro, 30-Apr-2014.) (Revised by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
cncfi | ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝑅 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfrss 24631 | . . . . . 6 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) | |
2 | cncfrss2 24632 | . . . . . 6 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) | |
3 | elcncf2 24630 | . . . . . 6 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦)))) | |
4 | 1, 2, 3 | syl2anc 582 | . . . . 5 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦)))) |
5 | 4 | ibi 266 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦))) |
6 | 5 | simprd 494 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦)) |
7 | oveq2 7419 | . . . . . . . 8 ⊢ (𝑥 = 𝐶 → (𝑤 − 𝑥) = (𝑤 − 𝐶)) | |
8 | 7 | fveq2d 6894 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → (abs‘(𝑤 − 𝑥)) = (abs‘(𝑤 − 𝐶))) |
9 | 8 | breq1d 5157 | . . . . . 6 ⊢ (𝑥 = 𝐶 → ((abs‘(𝑤 − 𝑥)) < 𝑧 ↔ (abs‘(𝑤 − 𝐶)) < 𝑧)) |
10 | fveq2 6890 | . . . . . . . . 9 ⊢ (𝑥 = 𝐶 → (𝐹‘𝑥) = (𝐹‘𝐶)) | |
11 | 10 | oveq2d 7427 | . . . . . . . 8 ⊢ (𝑥 = 𝐶 → ((𝐹‘𝑤) − (𝐹‘𝑥)) = ((𝐹‘𝑤) − (𝐹‘𝐶))) |
12 | 11 | fveq2d 6894 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) = (abs‘((𝐹‘𝑤) − (𝐹‘𝐶)))) |
13 | 12 | breq1d 5157 | . . . . . 6 ⊢ (𝑥 = 𝐶 → ((abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦 ↔ (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑦)) |
14 | 9, 13 | imbi12d 343 | . . . . 5 ⊢ (𝑥 = 𝐶 → (((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦) ↔ ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑦))) |
15 | 14 | rexralbidv 3218 | . . . 4 ⊢ (𝑥 = 𝐶 → (∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑦))) |
16 | breq2 5151 | . . . . . 6 ⊢ (𝑦 = 𝑅 → ((abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑦 ↔ (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑅)) | |
17 | 16 | imbi2d 339 | . . . . 5 ⊢ (𝑦 = 𝑅 → (((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑦) ↔ ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑅))) |
18 | 17 | rexralbidv 3218 | . . . 4 ⊢ (𝑦 = 𝑅 → (∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑅))) |
19 | 15, 18 | rspc2v 3621 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝑅 ∈ ℝ+) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑅))) |
20 | 6, 19 | mpan9 505 | . 2 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝑅 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑅)) |
21 | 20 | 3impb 1113 | 1 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝑅 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ∀wral 3059 ∃wrex 3068 ⊆ wss 3947 class class class wbr 5147 ⟶wf 6538 ‘cfv 6542 (class class class)co 7411 ℂcc 11110 < clt 11252 − cmin 11448 ℝ+crp 12978 abscabs 15185 –cn→ccncf 24616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-2 12279 df-cj 15050 df-re 15051 df-im 15052 df-abs 15187 df-cncf 24618 |
This theorem is referenced by: cncfcdm 24638 climcncf 24640 cncfco 24647 ivthlem2 25201 ivthlem3 25202 ulmcn 26147 pntlem3 27348 sinccvglem 34955 itg2gt0cn 36846 |
Copyright terms: Public domain | W3C validator |