| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnlimci | Structured version Visualization version GIF version | ||
| Description: If 𝐹 is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.) |
| Ref | Expression |
|---|---|
| cnlimci.f | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐷)) |
| cnlimci.c | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| cnlimci | ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) | |
| 2 | oveq2 7354 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐹 limℂ 𝑥) = (𝐹 limℂ 𝐵)) | |
| 3 | 1, 2 | eleq12d 2825 | . 2 ⊢ (𝑥 = 𝐵 → ((𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥) ↔ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵))) |
| 4 | cnlimci.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐷)) | |
| 5 | cncfrss 24811 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐷) → 𝐴 ⊆ ℂ) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| 7 | cncfrss2 24812 | . . . . . 6 ⊢ (𝐹 ∈ (𝐴–cn→𝐷) → 𝐷 ⊆ ℂ) | |
| 8 | 4, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ℂ) |
| 9 | ssid 3952 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
| 10 | cncfss 24819 | . . . . 5 ⊢ ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐴–cn→𝐷) ⊆ (𝐴–cn→ℂ)) | |
| 11 | 8, 9, 10 | sylancl 586 | . . . 4 ⊢ (𝜑 → (𝐴–cn→𝐷) ⊆ (𝐴–cn→ℂ)) |
| 12 | 11, 4 | sseldd 3930 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) |
| 13 | cnlimc 25816 | . . . 4 ⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴–cn→ℂ) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)))) | |
| 14 | 13 | simplbda 499 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐹 ∈ (𝐴–cn→ℂ)) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)) |
| 15 | 6, 12, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)) |
| 16 | cnlimci.c | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 17 | 3, 15, 16 | rspcdva 3573 | 1 ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 –cn→ccncf 24796 limℂ climc 25790 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-fz 13408 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-rest 17326 df-topn 17327 df-topgen 17347 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cn 23142 df-cnp 23143 df-xms 24235 df-ms 24236 df-cncf 24798 df-limc 25794 |
| This theorem is referenced by: cnmptlimc 25818 dvcnvlem 25907 ioccncflimc 45931 icocncflimc 45935 dirkercncflem2 46150 fourierdlem84 46236 fourierdlem85 46237 fourierdlem88 46240 fourierdlem111 46263 fouriercn 46278 |
| Copyright terms: Public domain | W3C validator |