Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnlimci | Structured version Visualization version GIF version |
Description: If 𝐹 is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.) |
Ref | Expression |
---|---|
cnlimci.f | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐷)) |
cnlimci.c | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
Ref | Expression |
---|---|
cnlimci | ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6834 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) | |
2 | oveq2 7354 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐹 limℂ 𝑥) = (𝐹 limℂ 𝐵)) | |
3 | 1, 2 | eleq12d 2832 | . 2 ⊢ (𝑥 = 𝐵 → ((𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥) ↔ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵))) |
4 | cnlimci.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐷)) | |
5 | cncfrss 24164 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐷) → 𝐴 ⊆ ℂ) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
7 | cncfrss2 24165 | . . . . . 6 ⊢ (𝐹 ∈ (𝐴–cn→𝐷) → 𝐷 ⊆ ℂ) | |
8 | 4, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ℂ) |
9 | ssid 3961 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
10 | cncfss 24172 | . . . . 5 ⊢ ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐴–cn→𝐷) ⊆ (𝐴–cn→ℂ)) | |
11 | 8, 9, 10 | sylancl 587 | . . . 4 ⊢ (𝜑 → (𝐴–cn→𝐷) ⊆ (𝐴–cn→ℂ)) |
12 | 11, 4 | sseldd 3940 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) |
13 | cnlimc 25162 | . . . 4 ⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴–cn→ℂ) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)))) | |
14 | 13 | simplbda 501 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐹 ∈ (𝐴–cn→ℂ)) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)) |
15 | 6, 12, 14 | syl2anc 585 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)) |
16 | cnlimci.c | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
17 | 3, 15, 16 | rspcdva 3577 | 1 ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∀wral 3062 ⊆ wss 3905 ⟶wf 6484 ‘cfv 6488 (class class class)co 7346 ℂcc 10979 –cn→ccncf 24149 limℂ climc 25136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 ax-pre-sup 11059 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-tp 4586 df-op 4588 df-uni 4861 df-int 4903 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7790 df-1st 7908 df-2nd 7909 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-1o 8376 df-er 8578 df-map 8697 df-pm 8698 df-en 8814 df-dom 8815 df-sdom 8816 df-fin 8817 df-fi 9277 df-sup 9308 df-inf 9309 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-div 11743 df-nn 12084 df-2 12146 df-3 12147 df-4 12148 df-5 12149 df-6 12150 df-7 12151 df-8 12152 df-9 12153 df-n0 12344 df-z 12430 df-dec 12548 df-uz 12693 df-q 12799 df-rp 12841 df-xneg 12958 df-xadd 12959 df-xmul 12960 df-fz 13350 df-seq 13832 df-exp 13893 df-cj 14914 df-re 14915 df-im 14916 df-sqrt 15050 df-abs 15051 df-struct 16950 df-slot 16985 df-ndx 16997 df-base 17015 df-plusg 17077 df-mulr 17078 df-starv 17079 df-tset 17083 df-ple 17084 df-ds 17086 df-unif 17087 df-rest 17235 df-topn 17236 df-topgen 17256 df-psmet 20699 df-xmet 20700 df-met 20701 df-bl 20702 df-mopn 20703 df-cnfld 20708 df-top 22153 df-topon 22170 df-topsp 22192 df-bases 22206 df-cn 22488 df-cnp 22489 df-xms 23583 df-ms 23584 df-cncf 24151 df-limc 25140 |
This theorem is referenced by: cnmptlimc 25164 dvcnvlem 25250 ioccncflimc 43814 icocncflimc 43818 dirkercncflem2 44033 fourierdlem84 44119 fourierdlem85 44120 fourierdlem88 44123 fourierdlem111 44146 fouriercn 44161 |
Copyright terms: Public domain | W3C validator |