Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfcompt Structured version   Visualization version   GIF version

Theorem cncfcompt 45194
Description: Composition of continuous functions. A generalization of cncfmpt1f 24821 to arbitrary domains. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfcompt.bcn (𝜑 → (𝑥𝐴𝐵) ∈ (𝐴cn𝐶))
cncfcompt.f (𝜑𝐹 ∈ (𝐶cn𝐷))
Assertion
Ref Expression
cncfcompt (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem cncfcompt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cncfcompt.f . . . . . 6 (𝜑𝐹 ∈ (𝐶cn𝐷))
2 cncff 24800 . . . . . 6 (𝐹 ∈ (𝐶cn𝐷) → 𝐹:𝐶𝐷)
31, 2syl 17 . . . . 5 (𝜑𝐹:𝐶𝐷)
43adantr 480 . . . 4 ((𝜑𝑥𝐴) → 𝐹:𝐶𝐷)
5 cncfcompt.bcn . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ (𝐴cn𝐶))
6 cncff 24800 . . . . . 6 ((𝑥𝐴𝐵) ∈ (𝐴cn𝐶) → (𝑥𝐴𝐵):𝐴𝐶)
75, 6syl 17 . . . . 5 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
87fvmptelcdm 7117 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝐶)
94, 8ffvelcdmd 7089 . . 3 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ 𝐷)
109fmpttd 7119 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)):𝐴𝐷)
11 cncfrss2 24799 . . . 4 (𝐹 ∈ (𝐶cn𝐷) → 𝐷 ⊆ ℂ)
121, 11syl 17 . . 3 (𝜑𝐷 ⊆ ℂ)
13 eqidd 2728 . . . . 5 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
143feqmptd 6961 . . . . 5 (𝜑𝐹 = (𝑦𝐶 ↦ (𝐹𝑦)))
15 fveq2 6891 . . . . 5 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
168, 13, 14, 15fmptco 7132 . . . 4 (𝜑 → (𝐹 ∘ (𝑥𝐴𝐵)) = (𝑥𝐴 ↦ (𝐹𝐵)))
17 ssid 4000 . . . . . . 7 ℂ ⊆ ℂ
18 cncfss 24806 . . . . . . 7 ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐶cn𝐷) ⊆ (𝐶cn→ℂ))
1912, 17, 18sylancl 585 . . . . . 6 (𝜑 → (𝐶cn𝐷) ⊆ (𝐶cn→ℂ))
2019, 1sseldd 3979 . . . . 5 (𝜑𝐹 ∈ (𝐶cn→ℂ))
215, 20cncfco 24814 . . . 4 (𝜑 → (𝐹 ∘ (𝑥𝐴𝐵)) ∈ (𝐴cn→ℂ))
2216, 21eqeltrrd 2829 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn→ℂ))
23 cncfcdm 24805 . . 3 ((𝐷 ⊆ ℂ ∧ (𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn→ℂ)) → ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn𝐷) ↔ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴𝐷))
2412, 22, 23syl2anc 583 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn𝐷) ↔ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴𝐷))
2510, 24mpbird 257 1 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2099  wss 3944  cmpt 5225  ccom 5676  wf 6538  cfv 6542  (class class class)co 7414  cc 11128  cnccncf 24783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-er 8718  df-map 8838  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-2 12297  df-cj 15070  df-re 15071  df-im 15072  df-abs 15207  df-cncf 24785
This theorem is referenced by:  itgsbtaddcnst  45293  fourierdlem23  45441  fourierdlem83  45500  fourierdlem101  45518
  Copyright terms: Public domain W3C validator