Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfcompt Structured version   Visualization version   GIF version

Theorem cncfcompt 43314
Description: Composition of continuous functions. A generalization of cncfmpt1f 23983 to arbitrary domains. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfcompt.bcn (𝜑 → (𝑥𝐴𝐵) ∈ (𝐴cn𝐶))
cncfcompt.f (𝜑𝐹 ∈ (𝐶cn𝐷))
Assertion
Ref Expression
cncfcompt (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem cncfcompt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cncfcompt.f . . . . . 6 (𝜑𝐹 ∈ (𝐶cn𝐷))
2 cncff 23962 . . . . . 6 (𝐹 ∈ (𝐶cn𝐷) → 𝐹:𝐶𝐷)
31, 2syl 17 . . . . 5 (𝜑𝐹:𝐶𝐷)
43adantr 480 . . . 4 ((𝜑𝑥𝐴) → 𝐹:𝐶𝐷)
5 cncfcompt.bcn . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ (𝐴cn𝐶))
6 cncff 23962 . . . . . 6 ((𝑥𝐴𝐵) ∈ (𝐴cn𝐶) → (𝑥𝐴𝐵):𝐴𝐶)
75, 6syl 17 . . . . 5 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
87fvmptelrn 6969 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝐶)
94, 8ffvelrnd 6944 . . 3 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ 𝐷)
109fmpttd 6971 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)):𝐴𝐷)
11 cncfrss2 23961 . . . 4 (𝐹 ∈ (𝐶cn𝐷) → 𝐷 ⊆ ℂ)
121, 11syl 17 . . 3 (𝜑𝐷 ⊆ ℂ)
13 eqidd 2739 . . . . 5 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
143feqmptd 6819 . . . . 5 (𝜑𝐹 = (𝑦𝐶 ↦ (𝐹𝑦)))
15 fveq2 6756 . . . . 5 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
168, 13, 14, 15fmptco 6983 . . . 4 (𝜑 → (𝐹 ∘ (𝑥𝐴𝐵)) = (𝑥𝐴 ↦ (𝐹𝐵)))
17 ssid 3939 . . . . . . 7 ℂ ⊆ ℂ
18 cncfss 23968 . . . . . . 7 ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐶cn𝐷) ⊆ (𝐶cn→ℂ))
1912, 17, 18sylancl 585 . . . . . 6 (𝜑 → (𝐶cn𝐷) ⊆ (𝐶cn→ℂ))
2019, 1sseldd 3918 . . . . 5 (𝜑𝐹 ∈ (𝐶cn→ℂ))
215, 20cncfco 23976 . . . 4 (𝜑 → (𝐹 ∘ (𝑥𝐴𝐵)) ∈ (𝐴cn→ℂ))
2216, 21eqeltrrd 2840 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn→ℂ))
23 cncffvrn 23967 . . 3 ((𝐷 ⊆ ℂ ∧ (𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn→ℂ)) → ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn𝐷) ↔ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴𝐷))
2412, 22, 23syl2anc 583 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn𝐷) ↔ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴𝐷))
2510, 24mpbird 256 1 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  wss 3883  cmpt 5153  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cnccncf 23945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-cj 14738  df-re 14739  df-im 14740  df-abs 14875  df-cncf 23947
This theorem is referenced by:  itgsbtaddcnst  43413  fourierdlem23  43561  fourierdlem83  43620  fourierdlem101  43638
  Copyright terms: Public domain W3C validator