Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfcompt Structured version   Visualization version   GIF version

Theorem cncfcompt 41024
Description: Composition of continuous functions. A generalization of cncfmpt1f 23124 to arbitrary domains. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfcompt.bcn (𝜑 → (𝑥𝐴𝐵) ∈ (𝐴cn𝐶))
cncfcompt.f (𝜑𝐹 ∈ (𝐶cn𝐷))
Assertion
Ref Expression
cncfcompt (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem cncfcompt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cncfcompt.f . . . . . 6 (𝜑𝐹 ∈ (𝐶cn𝐷))
2 cncff 23104 . . . . . 6 (𝐹 ∈ (𝐶cn𝐷) → 𝐹:𝐶𝐷)
31, 2syl 17 . . . . 5 (𝜑𝐹:𝐶𝐷)
43adantr 474 . . . 4 ((𝜑𝑥𝐴) → 𝐹:𝐶𝐷)
5 cncfcompt.bcn . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ (𝐴cn𝐶))
6 cncff 23104 . . . . . 6 ((𝑥𝐴𝐵) ∈ (𝐴cn𝐶) → (𝑥𝐴𝐵):𝐴𝐶)
75, 6syl 17 . . . . 5 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
87fvmptelrn 6647 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝐶)
94, 8ffvelrnd 6624 . . 3 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ 𝐷)
109fmpttd 6649 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)):𝐴𝐷)
11 cncfrss2 23103 . . . 4 (𝐹 ∈ (𝐶cn𝐷) → 𝐷 ⊆ ℂ)
121, 11syl 17 . . 3 (𝜑𝐷 ⊆ ℂ)
13 eqidd 2779 . . . . 5 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
143feqmptd 6509 . . . . 5 (𝜑𝐹 = (𝑦𝐶 ↦ (𝐹𝑦)))
15 fveq2 6446 . . . . 5 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
168, 13, 14, 15fmptco 6661 . . . 4 (𝜑 → (𝐹 ∘ (𝑥𝐴𝐵)) = (𝑥𝐴 ↦ (𝐹𝐵)))
17 ssid 3842 . . . . . . 7 ℂ ⊆ ℂ
18 cncfss 23110 . . . . . . 7 ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐶cn𝐷) ⊆ (𝐶cn→ℂ))
1912, 17, 18sylancl 580 . . . . . 6 (𝜑 → (𝐶cn𝐷) ⊆ (𝐶cn→ℂ))
2019, 1sseldd 3822 . . . . 5 (𝜑𝐹 ∈ (𝐶cn→ℂ))
215, 20cncfco 23118 . . . 4 (𝜑 → (𝐹 ∘ (𝑥𝐴𝐵)) ∈ (𝐴cn→ℂ))
2216, 21eqeltrrd 2860 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn→ℂ))
23 cncffvrn 23109 . . 3 ((𝐷 ⊆ ℂ ∧ (𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn→ℂ)) → ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn𝐷) ↔ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴𝐷))
2412, 22, 23syl2anc 579 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn𝐷) ↔ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴𝐷))
2510, 24mpbird 249 1 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wcel 2107  wss 3792  cmpt 4965  ccom 5359  wf 6131  cfv 6135  (class class class)co 6922  cc 10270  cnccncf 23087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-po 5274  df-so 5275  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-2 11438  df-cj 14246  df-re 14247  df-im 14248  df-abs 14383  df-cncf 23089
This theorem is referenced by:  itgsbtaddcnst  41125  fourierdlem23  41274  fourierdlem83  41333  fourierdlem101  41351
  Copyright terms: Public domain W3C validator