Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cncfcompt | Structured version Visualization version GIF version |
Description: Composition of continuous functions. A generalization of cncfmpt1f 23843 to arbitrary domains. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
cncfcompt.bcn | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐴–cn→𝐶)) |
cncfcompt.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶–cn→𝐷)) |
Ref | Expression |
---|---|
cncfcompt | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ (𝐴–cn→𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfcompt.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐶–cn→𝐷)) | |
2 | cncff 23822 | . . . . . 6 ⊢ (𝐹 ∈ (𝐶–cn→𝐷) → 𝐹:𝐶⟶𝐷) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐶⟶𝐷) |
4 | 3 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐶⟶𝐷) |
5 | cncfcompt.bcn | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐴–cn→𝐶)) | |
6 | cncff 23822 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐴–cn→𝐶) → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
8 | 7 | fvmptelrn 6952 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
9 | 4, 8 | ffvelrnd 6927 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝐵) ∈ 𝐷) |
10 | 9 | fmpttd 6954 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)):𝐴⟶𝐷) |
11 | cncfrss2 23821 | . . . 4 ⊢ (𝐹 ∈ (𝐶–cn→𝐷) → 𝐷 ⊆ ℂ) | |
12 | 1, 11 | syl 17 | . . 3 ⊢ (𝜑 → 𝐷 ⊆ ℂ) |
13 | eqidd 2740 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
14 | 3 | feqmptd 6802 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ 𝐶 ↦ (𝐹‘𝑦))) |
15 | fveq2 6739 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐹‘𝑦) = (𝐹‘𝐵)) | |
16 | 8, 13, 14, 15 | fmptco 6966 | . . . 4 ⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵))) |
17 | ssid 3940 | . . . . . . 7 ⊢ ℂ ⊆ ℂ | |
18 | cncfss 23828 | . . . . . . 7 ⊢ ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐶–cn→𝐷) ⊆ (𝐶–cn→ℂ)) | |
19 | 12, 17, 18 | sylancl 589 | . . . . . 6 ⊢ (𝜑 → (𝐶–cn→𝐷) ⊆ (𝐶–cn→ℂ)) |
20 | 19, 1 | sseldd 3919 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐶–cn→ℂ)) |
21 | 5, 20 | cncfco 23836 | . . . 4 ⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ (𝐴–cn→ℂ)) |
22 | 16, 21 | eqeltrrd 2841 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ (𝐴–cn→ℂ)) |
23 | cncffvrn 23827 | . . 3 ⊢ ((𝐷 ⊆ ℂ ∧ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ (𝐴–cn→ℂ)) → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ (𝐴–cn→𝐷) ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)):𝐴⟶𝐷)) | |
24 | 12, 22, 23 | syl2anc 587 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ (𝐴–cn→𝐷) ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)):𝐴⟶𝐷)) |
25 | 10, 24 | mpbird 260 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ (𝐴–cn→𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2112 ⊆ wss 3883 ↦ cmpt 5152 ∘ ccom 5573 ⟶wf 6397 ‘cfv 6401 (class class class)co 7235 ℂcc 10757 –cn→ccncf 23805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 ax-cnex 10815 ax-resscn 10816 ax-1cn 10817 ax-icn 10818 ax-addcl 10819 ax-addrcl 10820 ax-mulcl 10821 ax-mulrcl 10822 ax-mulcom 10823 ax-addass 10824 ax-mulass 10825 ax-distr 10826 ax-i2m1 10827 ax-1ne0 10828 ax-1rid 10829 ax-rnegex 10830 ax-rrecex 10831 ax-cnre 10832 ax-pre-lttri 10833 ax-pre-lttrn 10834 ax-pre-ltadd 10835 ax-pre-mulgt0 10836 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5472 df-po 5486 df-so 5487 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-riota 7192 df-ov 7238 df-oprab 7239 df-mpo 7240 df-er 8415 df-map 8534 df-en 8651 df-dom 8652 df-sdom 8653 df-pnf 10899 df-mnf 10900 df-xr 10901 df-ltxr 10902 df-le 10903 df-sub 11094 df-neg 11095 df-div 11520 df-2 11923 df-cj 14695 df-re 14696 df-im 14697 df-abs 14832 df-cncf 23807 |
This theorem is referenced by: itgsbtaddcnst 43244 fourierdlem23 43392 fourierdlem83 43451 fourierdlem101 43469 |
Copyright terms: Public domain | W3C validator |