![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cncfcompt | Structured version Visualization version GIF version |
Description: Composition of continuous functions. A generalization of cncfmpt1f 24864 to arbitrary domains. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
cncfcompt.bcn | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐴–cn→𝐶)) |
cncfcompt.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶–cn→𝐷)) |
Ref | Expression |
---|---|
cncfcompt | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ (𝐴–cn→𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfcompt.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐶–cn→𝐷)) | |
2 | cncff 24843 | . . . . . 6 ⊢ (𝐹 ∈ (𝐶–cn→𝐷) → 𝐹:𝐶⟶𝐷) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐶⟶𝐷) |
4 | 3 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐶⟶𝐷) |
5 | cncfcompt.bcn | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐴–cn→𝐶)) | |
6 | cncff 24843 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐴–cn→𝐶) → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
8 | 7 | fvmptelcdm 7120 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
9 | 4, 8 | ffvelcdmd 7092 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝐵) ∈ 𝐷) |
10 | 9 | fmpttd 7122 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)):𝐴⟶𝐷) |
11 | cncfrss2 24842 | . . . 4 ⊢ (𝐹 ∈ (𝐶–cn→𝐷) → 𝐷 ⊆ ℂ) | |
12 | 1, 11 | syl 17 | . . 3 ⊢ (𝜑 → 𝐷 ⊆ ℂ) |
13 | eqidd 2726 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
14 | 3 | feqmptd 6964 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ 𝐶 ↦ (𝐹‘𝑦))) |
15 | fveq2 6894 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐹‘𝑦) = (𝐹‘𝐵)) | |
16 | 8, 13, 14, 15 | fmptco 7136 | . . . 4 ⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵))) |
17 | ssid 4000 | . . . . . . 7 ⊢ ℂ ⊆ ℂ | |
18 | cncfss 24849 | . . . . . . 7 ⊢ ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐶–cn→𝐷) ⊆ (𝐶–cn→ℂ)) | |
19 | 12, 17, 18 | sylancl 584 | . . . . . 6 ⊢ (𝜑 → (𝐶–cn→𝐷) ⊆ (𝐶–cn→ℂ)) |
20 | 19, 1 | sseldd 3978 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐶–cn→ℂ)) |
21 | 5, 20 | cncfco 24857 | . . . 4 ⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ (𝐴–cn→ℂ)) |
22 | 16, 21 | eqeltrrd 2826 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ (𝐴–cn→ℂ)) |
23 | cncfcdm 24848 | . . 3 ⊢ ((𝐷 ⊆ ℂ ∧ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ (𝐴–cn→ℂ)) → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ (𝐴–cn→𝐷) ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)):𝐴⟶𝐷)) | |
24 | 12, 22, 23 | syl2anc 582 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ (𝐴–cn→𝐷) ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)):𝐴⟶𝐷)) |
25 | 10, 24 | mpbird 256 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ (𝐴–cn→𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 ⊆ wss 3945 ↦ cmpt 5231 ∘ ccom 5681 ⟶wf 6543 ‘cfv 6547 (class class class)co 7417 ℂcc 11136 –cn→ccncf 24826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-er 8723 df-map 8845 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-2 12305 df-cj 15078 df-re 15079 df-im 15080 df-abs 15215 df-cncf 24828 |
This theorem is referenced by: itgsbtaddcnst 45433 fourierdlem23 45581 fourierdlem83 45640 fourierdlem101 45658 |
Copyright terms: Public domain | W3C validator |