Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfcompt Structured version   Visualization version   GIF version

Theorem cncfcompt 45804
Description: Composition of continuous functions. A generalization of cncfmpt1f 24959 to arbitrary domains. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfcompt.bcn (𝜑 → (𝑥𝐴𝐵) ∈ (𝐴cn𝐶))
cncfcompt.f (𝜑𝐹 ∈ (𝐶cn𝐷))
Assertion
Ref Expression
cncfcompt (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem cncfcompt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cncfcompt.f . . . . . 6 (𝜑𝐹 ∈ (𝐶cn𝐷))
2 cncff 24938 . . . . . 6 (𝐹 ∈ (𝐶cn𝐷) → 𝐹:𝐶𝐷)
31, 2syl 17 . . . . 5 (𝜑𝐹:𝐶𝐷)
43adantr 480 . . . 4 ((𝜑𝑥𝐴) → 𝐹:𝐶𝐷)
5 cncfcompt.bcn . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ (𝐴cn𝐶))
6 cncff 24938 . . . . . 6 ((𝑥𝐴𝐵) ∈ (𝐴cn𝐶) → (𝑥𝐴𝐵):𝐴𝐶)
75, 6syl 17 . . . . 5 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
87fvmptelcdm 7147 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝐶)
94, 8ffvelcdmd 7119 . . 3 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ 𝐷)
109fmpttd 7149 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)):𝐴𝐷)
11 cncfrss2 24937 . . . 4 (𝐹 ∈ (𝐶cn𝐷) → 𝐷 ⊆ ℂ)
121, 11syl 17 . . 3 (𝜑𝐷 ⊆ ℂ)
13 eqidd 2741 . . . . 5 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
143feqmptd 6990 . . . . 5 (𝜑𝐹 = (𝑦𝐶 ↦ (𝐹𝑦)))
15 fveq2 6920 . . . . 5 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
168, 13, 14, 15fmptco 7163 . . . 4 (𝜑 → (𝐹 ∘ (𝑥𝐴𝐵)) = (𝑥𝐴 ↦ (𝐹𝐵)))
17 ssid 4031 . . . . . . 7 ℂ ⊆ ℂ
18 cncfss 24944 . . . . . . 7 ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐶cn𝐷) ⊆ (𝐶cn→ℂ))
1912, 17, 18sylancl 585 . . . . . 6 (𝜑 → (𝐶cn𝐷) ⊆ (𝐶cn→ℂ))
2019, 1sseldd 4009 . . . . 5 (𝜑𝐹 ∈ (𝐶cn→ℂ))
215, 20cncfco 24952 . . . 4 (𝜑 → (𝐹 ∘ (𝑥𝐴𝐵)) ∈ (𝐴cn→ℂ))
2216, 21eqeltrrd 2845 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn→ℂ))
23 cncfcdm 24943 . . 3 ((𝐷 ⊆ ℂ ∧ (𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn→ℂ)) → ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn𝐷) ↔ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴𝐷))
2412, 22, 23syl2anc 583 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn𝐷) ↔ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴𝐷))
2510, 24mpbird 257 1 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wss 3976  cmpt 5249  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cnccncf 24921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-cj 15148  df-re 15149  df-im 15150  df-abs 15285  df-cncf 24923
This theorem is referenced by:  itgsbtaddcnst  45903  fourierdlem23  46051  fourierdlem83  46110  fourierdlem101  46128
  Copyright terms: Public domain W3C validator