Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfcompt Structured version   Visualization version   GIF version

Theorem cncfcompt 45334
Description: Composition of continuous functions. A generalization of cncfmpt1f 24864 to arbitrary domains. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfcompt.bcn (𝜑 → (𝑥𝐴𝐵) ∈ (𝐴cn𝐶))
cncfcompt.f (𝜑𝐹 ∈ (𝐶cn𝐷))
Assertion
Ref Expression
cncfcompt (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem cncfcompt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cncfcompt.f . . . . . 6 (𝜑𝐹 ∈ (𝐶cn𝐷))
2 cncff 24843 . . . . . 6 (𝐹 ∈ (𝐶cn𝐷) → 𝐹:𝐶𝐷)
31, 2syl 17 . . . . 5 (𝜑𝐹:𝐶𝐷)
43adantr 479 . . . 4 ((𝜑𝑥𝐴) → 𝐹:𝐶𝐷)
5 cncfcompt.bcn . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ (𝐴cn𝐶))
6 cncff 24843 . . . . . 6 ((𝑥𝐴𝐵) ∈ (𝐴cn𝐶) → (𝑥𝐴𝐵):𝐴𝐶)
75, 6syl 17 . . . . 5 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
87fvmptelcdm 7120 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝐶)
94, 8ffvelcdmd 7092 . . 3 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ 𝐷)
109fmpttd 7122 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)):𝐴𝐷)
11 cncfrss2 24842 . . . 4 (𝐹 ∈ (𝐶cn𝐷) → 𝐷 ⊆ ℂ)
121, 11syl 17 . . 3 (𝜑𝐷 ⊆ ℂ)
13 eqidd 2726 . . . . 5 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
143feqmptd 6964 . . . . 5 (𝜑𝐹 = (𝑦𝐶 ↦ (𝐹𝑦)))
15 fveq2 6894 . . . . 5 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
168, 13, 14, 15fmptco 7136 . . . 4 (𝜑 → (𝐹 ∘ (𝑥𝐴𝐵)) = (𝑥𝐴 ↦ (𝐹𝐵)))
17 ssid 4000 . . . . . . 7 ℂ ⊆ ℂ
18 cncfss 24849 . . . . . . 7 ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐶cn𝐷) ⊆ (𝐶cn→ℂ))
1912, 17, 18sylancl 584 . . . . . 6 (𝜑 → (𝐶cn𝐷) ⊆ (𝐶cn→ℂ))
2019, 1sseldd 3978 . . . . 5 (𝜑𝐹 ∈ (𝐶cn→ℂ))
215, 20cncfco 24857 . . . 4 (𝜑 → (𝐹 ∘ (𝑥𝐴𝐵)) ∈ (𝐴cn→ℂ))
2216, 21eqeltrrd 2826 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn→ℂ))
23 cncfcdm 24848 . . 3 ((𝐷 ⊆ ℂ ∧ (𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn→ℂ)) → ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn𝐷) ↔ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴𝐷))
2412, 22, 23syl2anc 582 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn𝐷) ↔ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴𝐷))
2510, 24mpbird 256 1 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2098  wss 3945  cmpt 5231  ccom 5681  wf 6543  cfv 6547  (class class class)co 7417  cc 11136  cnccncf 24826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-er 8723  df-map 8845  df-en 8963  df-dom 8964  df-sdom 8965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-2 12305  df-cj 15078  df-re 15079  df-im 15080  df-abs 15215  df-cncf 24828
This theorem is referenced by:  itgsbtaddcnst  45433  fourierdlem23  45581  fourierdlem83  45640  fourierdlem101  45658
  Copyright terms: Public domain W3C validator