Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cncff | Structured version Visualization version GIF version |
Description: A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
cncff | ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfrss 23960 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) | |
2 | cncfrss2 23961 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) | |
3 | elcncf 23958 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) | |
4 | 1, 2, 3 | syl2anc 583 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) |
5 | 4 | ibi 266 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
6 | 5 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 < clt 10940 − cmin 11135 ℝ+crp 12659 abscabs 14873 –cn→ccncf 23945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-cncf 23947 |
This theorem is referenced by: cncfss 23968 climcncf 23969 cncfco 23976 cncfcompt2 23977 cncfmpt1f 23983 cncfmpt2ss 23985 negfcncf 23992 divcncf 24516 ivth2 24524 ivthicc 24527 evthicc2 24529 cniccbdd 24530 volivth 24676 cncombf 24727 cnmbf 24728 cniccibl 24910 cnicciblnc 24912 cnmptlimc 24959 cpnord 25004 cpnres 25006 dvrec 25024 rollelem 25058 rolle 25059 cmvth 25060 mvth 25061 dvlip 25062 c1liplem1 25065 c1lip1 25066 c1lip2 25067 dveq0 25069 dvgt0lem1 25071 dvgt0lem2 25072 dvgt0 25073 dvlt0 25074 dvge0 25075 dvle 25076 dvivthlem1 25077 dvivth 25079 dvne0 25080 dvne0f1 25081 dvcnvrelem1 25086 dvcnvrelem2 25087 dvcnvre 25088 dvcvx 25089 dvfsumle 25090 dvfsumge 25091 dvfsumabs 25092 ftc1cn 25112 ftc2 25113 ftc2ditglem 25114 ftc2ditg 25115 itgparts 25116 itgsubstlem 25117 itgsubst 25118 ulmcn 25463 psercn 25490 pserdvlem2 25492 pserdv 25493 sincn 25508 coscn 25509 logtayl 25720 dvcncxp1 25801 leibpi 25997 lgamgulmlem2 26084 ftc2re 32478 fdvposlt 32479 fdvneggt 32480 fdvposle 32481 fdvnegge 32482 ivthALT 34451 knoppcld 34612 knoppndv 34641 ftc1cnnclem 35775 ftc1cnnc 35776 ftc2nc 35786 3factsumint 39961 intlewftc 39997 dvle2 40008 cnioobibld 40961 evthiccabs 42924 cncfmptss 43018 mulc1cncfg 43020 expcnfg 43022 mulcncff 43301 cncfshift 43305 subcncff 43311 cncfcompt 43314 addcncff 43315 cncficcgt0 43319 divcncff 43322 cncfiooicclem1 43324 cncfiooiccre 43326 cncfioobd 43328 dvsubcncf 43355 dvmulcncf 43356 dvdivcncf 43358 ioodvbdlimc1lem1 43362 cnbdibl 43393 itgsubsticclem 43406 itgsubsticc 43407 itgioocnicc 43408 iblcncfioo 43409 itgiccshift 43411 itgsbtaddcnst 43413 fourierdlem18 43556 fourierdlem32 43570 fourierdlem33 43571 fourierdlem39 43577 fourierdlem48 43585 fourierdlem49 43586 fourierdlem58 43595 fourierdlem59 43596 fourierdlem71 43608 fourierdlem73 43610 fourierdlem81 43618 fourierdlem84 43621 fourierdlem85 43622 fourierdlem88 43625 fourierdlem94 43631 fourierdlem97 43634 fourierdlem101 43638 fourierdlem103 43640 fourierdlem104 43641 fourierdlem111 43648 fourierdlem112 43649 fourierdlem113 43650 fouriercn 43663 |
Copyright terms: Public domain | W3C validator |