![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cncff | Structured version Visualization version GIF version |
Description: A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
cncff | ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfrss 24406 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) | |
2 | cncfrss2 24407 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) | |
3 | elcncf 24404 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) | |
4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) |
5 | 4 | ibi 266 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
6 | 5 | simpld 495 | 1 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 ⊆ wss 3948 class class class wbr 5148 ⟶wf 6539 ‘cfv 6543 (class class class)co 7408 ℂcc 11107 < clt 11247 − cmin 11443 ℝ+crp 12973 abscabs 15180 –cn→ccncf 24391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-map 8821 df-cncf 24393 |
This theorem is referenced by: cncfss 24414 climcncf 24415 cncfco 24422 cncfcompt2 24423 cncfmpt1f 24429 cncfmpt2ss 24431 negfcncf 24438 divcncf 24963 ivth2 24971 ivthicc 24974 evthicc2 24976 cniccbdd 24977 volivth 25123 cncombf 25174 cnmbf 25175 cniccibl 25357 cnicciblnc 25359 cnmptlimc 25406 cpnord 25451 cpnres 25453 dvrec 25471 rollelem 25505 rolle 25506 cmvth 25507 mvth 25508 dvlip 25509 c1liplem1 25512 c1lip1 25513 c1lip2 25514 dveq0 25516 dvgt0lem1 25518 dvgt0lem2 25519 dvgt0 25520 dvlt0 25521 dvge0 25522 dvle 25523 dvivthlem1 25524 dvivth 25526 dvne0 25527 dvne0f1 25528 dvcnvrelem1 25533 dvcnvrelem2 25534 dvcnvre 25535 dvcvx 25536 dvfsumle 25537 dvfsumge 25538 dvfsumabs 25539 ftc1cn 25559 ftc2 25560 ftc2ditglem 25561 ftc2ditg 25562 itgparts 25563 itgsubstlem 25564 itgsubst 25565 ulmcn 25910 psercn 25937 pserdvlem2 25939 pserdv 25940 sincn 25955 coscn 25956 logtayl 26167 dvcncxp1 26248 leibpi 26444 lgamgulmlem2 26531 ftc2re 33605 fdvposlt 33606 fdvneggt 33607 fdvposle 33608 fdvnegge 33609 gg-cmvth 35176 gg-dvfsumle 35177 ivthALT 35215 knoppcld 35376 knoppndv 35405 ftc1cnnclem 36554 ftc1cnnc 36555 ftc2nc 36565 3factsumint 40885 intlewftc 40921 dvle2 40932 cnioobibld 41953 evthiccabs 44199 cncfmptss 44293 mulc1cncfg 44295 expcnfg 44297 mulcncff 44576 cncfshift 44580 subcncff 44586 cncfcompt 44589 addcncff 44590 cncficcgt0 44594 divcncff 44597 cncfiooicclem1 44599 cncfiooiccre 44601 cncfioobd 44603 dvsubcncf 44630 dvmulcncf 44631 dvdivcncf 44633 ioodvbdlimc1lem1 44637 cnbdibl 44668 itgsubsticclem 44681 itgsubsticc 44682 itgioocnicc 44683 iblcncfioo 44684 itgiccshift 44686 itgsbtaddcnst 44688 fourierdlem18 44831 fourierdlem32 44845 fourierdlem33 44846 fourierdlem39 44852 fourierdlem48 44860 fourierdlem49 44861 fourierdlem58 44870 fourierdlem59 44871 fourierdlem71 44883 fourierdlem73 44885 fourierdlem81 44893 fourierdlem84 44896 fourierdlem85 44897 fourierdlem88 44900 fourierdlem94 44906 fourierdlem97 44909 fourierdlem101 44913 fourierdlem103 44915 fourierdlem104 44916 fourierdlem111 44923 fourierdlem112 44924 fourierdlem113 44925 fouriercn 44938 |
Copyright terms: Public domain | W3C validator |