Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cncff | Structured version Visualization version GIF version |
Description: A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
cncff | ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfrss 24063 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) | |
2 | cncfrss2 24064 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) | |
3 | elcncf 24061 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) | |
4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) |
5 | 4 | ibi 266 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
6 | 5 | simpld 495 | 1 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2107 ∀wral 3065 ∃wrex 3066 ⊆ wss 3888 class class class wbr 5075 ⟶wf 6433 ‘cfv 6437 (class class class)co 7284 ℂcc 10878 < clt 11018 − cmin 11214 ℝ+crp 12739 abscabs 14954 –cn→ccncf 24048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-fv 6445 df-ov 7287 df-oprab 7288 df-mpo 7289 df-map 8626 df-cncf 24050 |
This theorem is referenced by: cncfss 24071 climcncf 24072 cncfco 24079 cncfcompt2 24080 cncfmpt1f 24086 cncfmpt2ss 24088 negfcncf 24095 divcncf 24620 ivth2 24628 ivthicc 24631 evthicc2 24633 cniccbdd 24634 volivth 24780 cncombf 24831 cnmbf 24832 cniccibl 25014 cnicciblnc 25016 cnmptlimc 25063 cpnord 25108 cpnres 25110 dvrec 25128 rollelem 25162 rolle 25163 cmvth 25164 mvth 25165 dvlip 25166 c1liplem1 25169 c1lip1 25170 c1lip2 25171 dveq0 25173 dvgt0lem1 25175 dvgt0lem2 25176 dvgt0 25177 dvlt0 25178 dvge0 25179 dvle 25180 dvivthlem1 25181 dvivth 25183 dvne0 25184 dvne0f1 25185 dvcnvrelem1 25190 dvcnvrelem2 25191 dvcnvre 25192 dvcvx 25193 dvfsumle 25194 dvfsumge 25195 dvfsumabs 25196 ftc1cn 25216 ftc2 25217 ftc2ditglem 25218 ftc2ditg 25219 itgparts 25220 itgsubstlem 25221 itgsubst 25222 ulmcn 25567 psercn 25594 pserdvlem2 25596 pserdv 25597 sincn 25612 coscn 25613 logtayl 25824 dvcncxp1 25905 leibpi 26101 lgamgulmlem2 26188 ftc2re 32587 fdvposlt 32588 fdvneggt 32589 fdvposle 32590 fdvnegge 32591 ivthALT 34533 knoppcld 34694 knoppndv 34723 ftc1cnnclem 35857 ftc1cnnc 35858 ftc2nc 35868 3factsumint 40040 intlewftc 40076 dvle2 40087 cnioobibld 41052 evthiccabs 43041 cncfmptss 43135 mulc1cncfg 43137 expcnfg 43139 mulcncff 43418 cncfshift 43422 subcncff 43428 cncfcompt 43431 addcncff 43432 cncficcgt0 43436 divcncff 43439 cncfiooicclem1 43441 cncfiooiccre 43443 cncfioobd 43445 dvsubcncf 43472 dvmulcncf 43473 dvdivcncf 43475 ioodvbdlimc1lem1 43479 cnbdibl 43510 itgsubsticclem 43523 itgsubsticc 43524 itgioocnicc 43525 iblcncfioo 43526 itgiccshift 43528 itgsbtaddcnst 43530 fourierdlem18 43673 fourierdlem32 43687 fourierdlem33 43688 fourierdlem39 43694 fourierdlem48 43702 fourierdlem49 43703 fourierdlem58 43712 fourierdlem59 43713 fourierdlem71 43725 fourierdlem73 43727 fourierdlem81 43735 fourierdlem84 43738 fourierdlem85 43739 fourierdlem88 43742 fourierdlem94 43748 fourierdlem97 43751 fourierdlem101 43755 fourierdlem103 43757 fourierdlem104 43758 fourierdlem111 43765 fourierdlem112 43766 fourierdlem113 43767 fouriercn 43780 |
Copyright terms: Public domain | W3C validator |