| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cncff | Structured version Visualization version GIF version | ||
| Description: A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| cncff | ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfrss 24800 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) | |
| 2 | cncfrss2 24801 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) | |
| 3 | elcncf 24798 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) |
| 5 | 4 | ibi 267 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3905 class class class wbr 5095 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 < clt 11168 − cmin 11365 ℝ+crp 12911 abscabs 15159 –cn→ccncf 24785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-map 8762 df-cncf 24787 |
| This theorem is referenced by: cncfss 24808 climcncf 24809 cncfco 24816 cncfcompt2 24817 cncfmpt1f 24823 cncfmpt2ss 24825 negfcncf 24833 divcncf 25364 ivth2 25372 ivthicc 25375 evthicc2 25377 cniccbdd 25378 volivth 25524 cncombf 25575 cnmbf 25576 cniccibl 25758 cnicciblnc 25760 cnmptlimc 25807 cpnord 25853 cpnres 25855 dvrec 25875 rollelem 25909 rolle 25910 cmvth 25911 cmvthOLD 25912 mvth 25913 dvlip 25914 c1liplem1 25917 c1lip1 25918 c1lip2 25919 dveq0 25921 dvgt0lem1 25923 dvgt0lem2 25924 dvgt0 25925 dvlt0 25926 dvge0 25927 dvle 25928 dvivthlem1 25929 dvivth 25931 dvne0 25932 dvne0f1 25933 dvcnvrelem1 25938 dvcnvrelem2 25939 dvcnvre 25940 dvcvx 25941 dvfsumle 25942 dvfsumleOLD 25943 dvfsumge 25944 dvfsumabs 25945 ftc1cn 25966 ftc2 25967 ftc2ditglem 25968 ftc2ditg 25969 itgparts 25970 itgsubstlem 25971 itgsubst 25972 ulmcn 26324 psercn 26352 pserdvlem2 26354 pserdv 26355 sincn 26370 coscn 26371 logtayl 26585 dvcncxp1 26668 leibpi 26868 lgamgulmlem2 26956 ftc2re 34565 fdvposlt 34566 fdvneggt 34567 fdvposle 34568 fdvnegge 34569 ivthALT 36308 knoppcld 36478 knoppndv 36507 ftc1cnnclem 37670 ftc1cnnc 37671 ftc2nc 37681 3factsumint 41998 intlewftc 42034 dvle2 42045 cnioobibld 43187 evthiccabs 45478 cncfmptss 45569 mulc1cncfg 45571 expcnfg 45573 mulcncff 45852 cncfshift 45856 subcncff 45862 cncfcompt 45865 addcncff 45866 cncficcgt0 45870 divcncff 45873 cncfiooicclem1 45875 cncfiooiccre 45877 cncfioobd 45879 dvsubcncf 45906 dvmulcncf 45907 dvdivcncf 45909 ioodvbdlimc1lem1 45913 cnbdibl 45944 itgsubsticclem 45957 itgsubsticc 45958 itgioocnicc 45959 iblcncfioo 45960 itgiccshift 45962 itgsbtaddcnst 45964 fourierdlem18 46107 fourierdlem32 46121 fourierdlem33 46122 fourierdlem39 46128 fourierdlem48 46136 fourierdlem49 46137 fourierdlem58 46146 fourierdlem59 46147 fourierdlem71 46159 fourierdlem73 46161 fourierdlem81 46169 fourierdlem84 46172 fourierdlem85 46173 fourierdlem88 46176 fourierdlem94 46182 fourierdlem97 46185 fourierdlem101 46189 fourierdlem103 46191 fourierdlem104 46192 fourierdlem111 46199 fourierdlem112 46200 fourierdlem113 46201 fouriercn 46214 |
| Copyright terms: Public domain | W3C validator |