![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cncff | Structured version Visualization version GIF version |
Description: A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
cncff | ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfrss 24930 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) | |
2 | cncfrss2 24931 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) | |
3 | elcncf 24928 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) | |
4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) |
5 | 4 | ibi 267 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
6 | 5 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2105 ∀wral 3058 ∃wrex 3067 ⊆ wss 3962 class class class wbr 5147 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 ℂcc 11150 < clt 11292 − cmin 11489 ℝ+crp 13031 abscabs 15269 –cn→ccncf 24915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-map 8866 df-cncf 24917 |
This theorem is referenced by: cncfss 24938 climcncf 24939 cncfco 24946 cncfcompt2 24947 cncfmpt1f 24953 cncfmpt2ss 24955 negfcncf 24963 divcncf 25495 ivth2 25503 ivthicc 25506 evthicc2 25508 cniccbdd 25509 volivth 25655 cncombf 25706 cnmbf 25707 cniccibl 25890 cnicciblnc 25892 cnmptlimc 25939 cpnord 25985 cpnres 25987 dvrec 26007 rollelem 26041 rolle 26042 cmvth 26043 cmvthOLD 26044 mvth 26045 dvlip 26046 c1liplem1 26049 c1lip1 26050 c1lip2 26051 dveq0 26053 dvgt0lem1 26055 dvgt0lem2 26056 dvgt0 26057 dvlt0 26058 dvge0 26059 dvle 26060 dvivthlem1 26061 dvivth 26063 dvne0 26064 dvne0f1 26065 dvcnvrelem1 26070 dvcnvrelem2 26071 dvcnvre 26072 dvcvx 26073 dvfsumle 26074 dvfsumleOLD 26075 dvfsumge 26076 dvfsumabs 26077 ftc1cn 26098 ftc2 26099 ftc2ditglem 26100 ftc2ditg 26101 itgparts 26102 itgsubstlem 26103 itgsubst 26104 ulmcn 26456 psercn 26484 pserdvlem2 26486 pserdv 26487 sincn 26502 coscn 26503 logtayl 26716 dvcncxp1 26799 leibpi 26999 lgamgulmlem2 27087 ftc2re 34591 fdvposlt 34592 fdvneggt 34593 fdvposle 34594 fdvnegge 34595 ivthALT 36317 knoppcld 36487 knoppndv 36516 ftc1cnnclem 37677 ftc1cnnc 37678 ftc2nc 37688 3factsumint 42006 intlewftc 42042 dvle2 42053 cnioobibld 43202 evthiccabs 45448 cncfmptss 45542 mulc1cncfg 45544 expcnfg 45546 mulcncff 45825 cncfshift 45829 subcncff 45835 cncfcompt 45838 addcncff 45839 cncficcgt0 45843 divcncff 45846 cncfiooicclem1 45848 cncfiooiccre 45850 cncfioobd 45852 dvsubcncf 45879 dvmulcncf 45880 dvdivcncf 45882 ioodvbdlimc1lem1 45886 cnbdibl 45917 itgsubsticclem 45930 itgsubsticc 45931 itgioocnicc 45932 iblcncfioo 45933 itgiccshift 45935 itgsbtaddcnst 45937 fourierdlem18 46080 fourierdlem32 46094 fourierdlem33 46095 fourierdlem39 46101 fourierdlem48 46109 fourierdlem49 46110 fourierdlem58 46119 fourierdlem59 46120 fourierdlem71 46132 fourierdlem73 46134 fourierdlem81 46142 fourierdlem84 46145 fourierdlem85 46146 fourierdlem88 46149 fourierdlem94 46155 fourierdlem97 46158 fourierdlem101 46162 fourierdlem103 46164 fourierdlem104 46165 fourierdlem111 46172 fourierdlem112 46173 fourierdlem113 46174 fouriercn 46187 |
Copyright terms: Public domain | W3C validator |