Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cncff | Structured version Visualization version GIF version |
Description: A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
cncff | ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfrss 23788 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) | |
2 | cncfrss2 23789 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) | |
3 | elcncf 23786 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) | |
4 | 1, 2, 3 | syl2anc 587 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) |
5 | 4 | ibi 270 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
6 | 5 | simpld 498 | 1 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2110 ∀wral 3061 ∃wrex 3062 ⊆ wss 3866 class class class wbr 5053 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 < clt 10867 − cmin 11062 ℝ+crp 12586 abscabs 14797 –cn→ccncf 23773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-map 8510 df-cncf 23775 |
This theorem is referenced by: cncfss 23796 climcncf 23797 cncfco 23804 cncfcompt2 23805 cncfmpt1f 23811 cncfmpt2ss 23813 negfcncf 23820 divcncf 24344 ivth2 24352 ivthicc 24355 evthicc2 24357 cniccbdd 24358 volivth 24504 cncombf 24555 cnmbf 24556 cniccibl 24738 cnicciblnc 24740 cnmptlimc 24787 cpnord 24832 cpnres 24834 dvrec 24852 rollelem 24886 rolle 24887 cmvth 24888 mvth 24889 dvlip 24890 c1liplem1 24893 c1lip1 24894 c1lip2 24895 dveq0 24897 dvgt0lem1 24899 dvgt0lem2 24900 dvgt0 24901 dvlt0 24902 dvge0 24903 dvle 24904 dvivthlem1 24905 dvivth 24907 dvne0 24908 dvne0f1 24909 dvcnvrelem1 24914 dvcnvrelem2 24915 dvcnvre 24916 dvcvx 24917 dvfsumle 24918 dvfsumge 24919 dvfsumabs 24920 ftc1cn 24940 ftc2 24941 ftc2ditglem 24942 ftc2ditg 24943 itgparts 24944 itgsubstlem 24945 itgsubst 24946 ulmcn 25291 psercn 25318 pserdvlem2 25320 pserdv 25321 sincn 25336 coscn 25337 logtayl 25548 dvcncxp1 25629 leibpi 25825 lgamgulmlem2 25912 ftc2re 32290 fdvposlt 32291 fdvneggt 32292 fdvposle 32293 fdvnegge 32294 ivthALT 34261 knoppcld 34422 knoppndv 34451 ftc1cnnclem 35585 ftc1cnnc 35586 ftc2nc 35596 3factsumint 39767 intlewftc 39803 dvle2 39813 cnioobibld 40748 evthiccabs 42709 cncfmptss 42803 mulc1cncfg 42805 expcnfg 42807 mulcncff 43086 cncfshift 43090 subcncff 43096 cncfcompt 43099 addcncff 43100 cncficcgt0 43104 divcncff 43107 cncfiooicclem1 43109 cncfiooiccre 43111 cncfioobd 43113 dvsubcncf 43140 dvmulcncf 43141 dvdivcncf 43143 ioodvbdlimc1lem1 43147 cnbdibl 43178 itgsubsticclem 43191 itgsubsticc 43192 itgioocnicc 43193 iblcncfioo 43194 itgiccshift 43196 itgsbtaddcnst 43198 fourierdlem18 43341 fourierdlem32 43355 fourierdlem33 43356 fourierdlem39 43362 fourierdlem48 43370 fourierdlem49 43371 fourierdlem58 43380 fourierdlem59 43381 fourierdlem71 43393 fourierdlem73 43395 fourierdlem81 43403 fourierdlem84 43406 fourierdlem85 43407 fourierdlem88 43410 fourierdlem94 43416 fourierdlem97 43419 fourierdlem101 43423 fourierdlem103 43425 fourierdlem104 43426 fourierdlem111 43433 fourierdlem112 43434 fourierdlem113 43435 fouriercn 43448 |
Copyright terms: Public domain | W3C validator |