| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cncff | Structured version Visualization version GIF version | ||
| Description: A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| cncff | ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfrss 24791 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) | |
| 2 | cncfrss2 24792 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) | |
| 3 | elcncf 24789 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) |
| 5 | 4 | ibi 267 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ⊆ wss 3917 class class class wbr 5110 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 < clt 11215 − cmin 11412 ℝ+crp 12958 abscabs 15207 –cn→ccncf 24776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-cncf 24778 |
| This theorem is referenced by: cncfss 24799 climcncf 24800 cncfco 24807 cncfcompt2 24808 cncfmpt1f 24814 cncfmpt2ss 24816 negfcncf 24824 divcncf 25355 ivth2 25363 ivthicc 25366 evthicc2 25368 cniccbdd 25369 volivth 25515 cncombf 25566 cnmbf 25567 cniccibl 25749 cnicciblnc 25751 cnmptlimc 25798 cpnord 25844 cpnres 25846 dvrec 25866 rollelem 25900 rolle 25901 cmvth 25902 cmvthOLD 25903 mvth 25904 dvlip 25905 c1liplem1 25908 c1lip1 25909 c1lip2 25910 dveq0 25912 dvgt0lem1 25914 dvgt0lem2 25915 dvgt0 25916 dvlt0 25917 dvge0 25918 dvle 25919 dvivthlem1 25920 dvivth 25922 dvne0 25923 dvne0f1 25924 dvcnvrelem1 25929 dvcnvrelem2 25930 dvcnvre 25931 dvcvx 25932 dvfsumle 25933 dvfsumleOLD 25934 dvfsumge 25935 dvfsumabs 25936 ftc1cn 25957 ftc2 25958 ftc2ditglem 25959 ftc2ditg 25960 itgparts 25961 itgsubstlem 25962 itgsubst 25963 ulmcn 26315 psercn 26343 pserdvlem2 26345 pserdv 26346 sincn 26361 coscn 26362 logtayl 26576 dvcncxp1 26659 leibpi 26859 lgamgulmlem2 26947 ftc2re 34596 fdvposlt 34597 fdvneggt 34598 fdvposle 34599 fdvnegge 34600 ivthALT 36330 knoppcld 36500 knoppndv 36529 ftc1cnnclem 37692 ftc1cnnc 37693 ftc2nc 37703 3factsumint 42020 intlewftc 42056 dvle2 42067 cnioobibld 43210 evthiccabs 45501 cncfmptss 45592 mulc1cncfg 45594 expcnfg 45596 mulcncff 45875 cncfshift 45879 subcncff 45885 cncfcompt 45888 addcncff 45889 cncficcgt0 45893 divcncff 45896 cncfiooicclem1 45898 cncfiooiccre 45900 cncfioobd 45902 dvsubcncf 45929 dvmulcncf 45930 dvdivcncf 45932 ioodvbdlimc1lem1 45936 cnbdibl 45967 itgsubsticclem 45980 itgsubsticc 45981 itgioocnicc 45982 iblcncfioo 45983 itgiccshift 45985 itgsbtaddcnst 45987 fourierdlem18 46130 fourierdlem32 46144 fourierdlem33 46145 fourierdlem39 46151 fourierdlem48 46159 fourierdlem49 46160 fourierdlem58 46169 fourierdlem59 46170 fourierdlem71 46182 fourierdlem73 46184 fourierdlem81 46192 fourierdlem84 46195 fourierdlem85 46196 fourierdlem88 46199 fourierdlem94 46205 fourierdlem97 46208 fourierdlem101 46212 fourierdlem103 46214 fourierdlem104 46215 fourierdlem111 46222 fourierdlem112 46223 fourierdlem113 46224 fouriercn 46237 |
| Copyright terms: Public domain | W3C validator |