| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cncff | Structured version Visualization version GIF version | ||
| Description: A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| cncff | ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfrss 24804 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) | |
| 2 | cncfrss2 24805 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) | |
| 3 | elcncf 24802 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) |
| 5 | 4 | ibi 267 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2110 ∀wral 3045 ∃wrex 3054 ⊆ wss 3900 class class class wbr 5089 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 ℂcc 10996 < clt 11138 − cmin 11336 ℝ+crp 12882 abscabs 15133 –cn→ccncf 24789 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-map 8747 df-cncf 24791 |
| This theorem is referenced by: cncfss 24812 climcncf 24813 cncfco 24820 cncfcompt2 24821 cncfmpt1f 24827 cncfmpt2ss 24829 negfcncf 24837 divcncf 25368 ivth2 25376 ivthicc 25379 evthicc2 25381 cniccbdd 25382 volivth 25528 cncombf 25579 cnmbf 25580 cniccibl 25762 cnicciblnc 25764 cnmptlimc 25811 cpnord 25857 cpnres 25859 dvrec 25879 rollelem 25913 rolle 25914 cmvth 25915 cmvthOLD 25916 mvth 25917 dvlip 25918 c1liplem1 25921 c1lip1 25922 c1lip2 25923 dveq0 25925 dvgt0lem1 25927 dvgt0lem2 25928 dvgt0 25929 dvlt0 25930 dvge0 25931 dvle 25932 dvivthlem1 25933 dvivth 25935 dvne0 25936 dvne0f1 25937 dvcnvrelem1 25942 dvcnvrelem2 25943 dvcnvre 25944 dvcvx 25945 dvfsumle 25946 dvfsumleOLD 25947 dvfsumge 25948 dvfsumabs 25949 ftc1cn 25970 ftc2 25971 ftc2ditglem 25972 ftc2ditg 25973 itgparts 25974 itgsubstlem 25975 itgsubst 25976 ulmcn 26328 psercn 26356 pserdvlem2 26358 pserdv 26359 sincn 26374 coscn 26375 logtayl 26589 dvcncxp1 26672 leibpi 26872 lgamgulmlem2 26960 ftc2re 34601 fdvposlt 34602 fdvneggt 34603 fdvposle 34604 fdvnegge 34605 ivthALT 36348 knoppcld 36518 knoppndv 36547 ftc1cnnclem 37710 ftc1cnnc 37711 ftc2nc 37721 3factsumint 42037 intlewftc 42073 dvle2 42084 cnioobibld 43226 evthiccabs 45515 cncfmptss 45606 mulc1cncfg 45608 expcnfg 45610 mulcncff 45887 cncfshift 45891 subcncff 45897 cncfcompt 45900 addcncff 45901 cncficcgt0 45905 divcncff 45908 cncfiooicclem1 45910 cncfiooiccre 45912 cncfioobd 45914 dvsubcncf 45941 dvmulcncf 45942 dvdivcncf 45944 ioodvbdlimc1lem1 45948 cnbdibl 45979 itgsubsticclem 45992 itgsubsticc 45993 itgioocnicc 45994 iblcncfioo 45995 itgiccshift 45997 itgsbtaddcnst 45999 fourierdlem18 46142 fourierdlem32 46156 fourierdlem33 46157 fourierdlem39 46163 fourierdlem48 46171 fourierdlem49 46172 fourierdlem58 46181 fourierdlem59 46182 fourierdlem71 46194 fourierdlem73 46196 fourierdlem81 46204 fourierdlem84 46207 fourierdlem85 46208 fourierdlem88 46211 fourierdlem94 46217 fourierdlem97 46220 fourierdlem101 46224 fourierdlem103 46226 fourierdlem104 46227 fourierdlem111 46234 fourierdlem112 46235 fourierdlem113 46236 fouriercn 46249 |
| Copyright terms: Public domain | W3C validator |