| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cncff | Structured version Visualization version GIF version | ||
| Description: A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| cncff | ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfrss 24784 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) | |
| 2 | cncfrss2 24785 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) | |
| 3 | elcncf 24782 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) |
| 5 | 4 | ibi 267 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 class class class wbr 5107 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 < clt 11208 − cmin 11405 ℝ+crp 12951 abscabs 15200 –cn→ccncf 24769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-cncf 24771 |
| This theorem is referenced by: cncfss 24792 climcncf 24793 cncfco 24800 cncfcompt2 24801 cncfmpt1f 24807 cncfmpt2ss 24809 negfcncf 24817 divcncf 25348 ivth2 25356 ivthicc 25359 evthicc2 25361 cniccbdd 25362 volivth 25508 cncombf 25559 cnmbf 25560 cniccibl 25742 cnicciblnc 25744 cnmptlimc 25791 cpnord 25837 cpnres 25839 dvrec 25859 rollelem 25893 rolle 25894 cmvth 25895 cmvthOLD 25896 mvth 25897 dvlip 25898 c1liplem1 25901 c1lip1 25902 c1lip2 25903 dveq0 25905 dvgt0lem1 25907 dvgt0lem2 25908 dvgt0 25909 dvlt0 25910 dvge0 25911 dvle 25912 dvivthlem1 25913 dvivth 25915 dvne0 25916 dvne0f1 25917 dvcnvrelem1 25922 dvcnvrelem2 25923 dvcnvre 25924 dvcvx 25925 dvfsumle 25926 dvfsumleOLD 25927 dvfsumge 25928 dvfsumabs 25929 ftc1cn 25950 ftc2 25951 ftc2ditglem 25952 ftc2ditg 25953 itgparts 25954 itgsubstlem 25955 itgsubst 25956 ulmcn 26308 psercn 26336 pserdvlem2 26338 pserdv 26339 sincn 26354 coscn 26355 logtayl 26569 dvcncxp1 26652 leibpi 26852 lgamgulmlem2 26940 ftc2re 34589 fdvposlt 34590 fdvneggt 34591 fdvposle 34592 fdvnegge 34593 ivthALT 36323 knoppcld 36493 knoppndv 36522 ftc1cnnclem 37685 ftc1cnnc 37686 ftc2nc 37696 3factsumint 42013 intlewftc 42049 dvle2 42060 cnioobibld 43203 evthiccabs 45494 cncfmptss 45585 mulc1cncfg 45587 expcnfg 45589 mulcncff 45868 cncfshift 45872 subcncff 45878 cncfcompt 45881 addcncff 45882 cncficcgt0 45886 divcncff 45889 cncfiooicclem1 45891 cncfiooiccre 45893 cncfioobd 45895 dvsubcncf 45922 dvmulcncf 45923 dvdivcncf 45925 ioodvbdlimc1lem1 45929 cnbdibl 45960 itgsubsticclem 45973 itgsubsticc 45974 itgioocnicc 45975 iblcncfioo 45976 itgiccshift 45978 itgsbtaddcnst 45980 fourierdlem18 46123 fourierdlem32 46137 fourierdlem33 46138 fourierdlem39 46144 fourierdlem48 46152 fourierdlem49 46153 fourierdlem58 46162 fourierdlem59 46163 fourierdlem71 46175 fourierdlem73 46177 fourierdlem81 46185 fourierdlem84 46188 fourierdlem85 46189 fourierdlem88 46192 fourierdlem94 46198 fourierdlem97 46201 fourierdlem101 46205 fourierdlem103 46207 fourierdlem104 46208 fourierdlem111 46215 fourierdlem112 46216 fourierdlem113 46217 fouriercn 46230 |
| Copyright terms: Public domain | W3C validator |