| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cncff | Structured version Visualization version GIF version | ||
| Description: A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| cncff | ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfrss 24833 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) | |
| 2 | cncfrss2 24834 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) | |
| 3 | elcncf 24831 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) |
| 5 | 4 | ibi 267 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ⊆ wss 3926 class class class wbr 5119 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 ℂcc 11125 < clt 11267 − cmin 11464 ℝ+crp 13006 abscabs 15251 –cn→ccncf 24818 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-map 8840 df-cncf 24820 |
| This theorem is referenced by: cncfss 24841 climcncf 24842 cncfco 24849 cncfcompt2 24850 cncfmpt1f 24856 cncfmpt2ss 24858 negfcncf 24866 divcncf 25398 ivth2 25406 ivthicc 25409 evthicc2 25411 cniccbdd 25412 volivth 25558 cncombf 25609 cnmbf 25610 cniccibl 25792 cnicciblnc 25794 cnmptlimc 25841 cpnord 25887 cpnres 25889 dvrec 25909 rollelem 25943 rolle 25944 cmvth 25945 cmvthOLD 25946 mvth 25947 dvlip 25948 c1liplem1 25951 c1lip1 25952 c1lip2 25953 dveq0 25955 dvgt0lem1 25957 dvgt0lem2 25958 dvgt0 25959 dvlt0 25960 dvge0 25961 dvle 25962 dvivthlem1 25963 dvivth 25965 dvne0 25966 dvne0f1 25967 dvcnvrelem1 25972 dvcnvrelem2 25973 dvcnvre 25974 dvcvx 25975 dvfsumle 25976 dvfsumleOLD 25977 dvfsumge 25978 dvfsumabs 25979 ftc1cn 26000 ftc2 26001 ftc2ditglem 26002 ftc2ditg 26003 itgparts 26004 itgsubstlem 26005 itgsubst 26006 ulmcn 26358 psercn 26386 pserdvlem2 26388 pserdv 26389 sincn 26404 coscn 26405 logtayl 26619 dvcncxp1 26702 leibpi 26902 lgamgulmlem2 26990 ftc2re 34576 fdvposlt 34577 fdvneggt 34578 fdvposle 34579 fdvnegge 34580 ivthALT 36299 knoppcld 36469 knoppndv 36498 ftc1cnnclem 37661 ftc1cnnc 37662 ftc2nc 37672 3factsumint 41984 intlewftc 42020 dvle2 42031 cnioobibld 43185 evthiccabs 45473 cncfmptss 45564 mulc1cncfg 45566 expcnfg 45568 mulcncff 45847 cncfshift 45851 subcncff 45857 cncfcompt 45860 addcncff 45861 cncficcgt0 45865 divcncff 45868 cncfiooicclem1 45870 cncfiooiccre 45872 cncfioobd 45874 dvsubcncf 45901 dvmulcncf 45902 dvdivcncf 45904 ioodvbdlimc1lem1 45908 cnbdibl 45939 itgsubsticclem 45952 itgsubsticc 45953 itgioocnicc 45954 iblcncfioo 45955 itgiccshift 45957 itgsbtaddcnst 45959 fourierdlem18 46102 fourierdlem32 46116 fourierdlem33 46117 fourierdlem39 46123 fourierdlem48 46131 fourierdlem49 46132 fourierdlem58 46141 fourierdlem59 46142 fourierdlem71 46154 fourierdlem73 46156 fourierdlem81 46164 fourierdlem84 46167 fourierdlem85 46168 fourierdlem88 46171 fourierdlem94 46177 fourierdlem97 46180 fourierdlem101 46184 fourierdlem103 46186 fourierdlem104 46187 fourierdlem111 46194 fourierdlem112 46195 fourierdlem113 46196 fouriercn 46209 |
| Copyright terms: Public domain | W3C validator |