| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cncff | Structured version Visualization version GIF version | ||
| Description: A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| cncff | ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfrss 24821 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) | |
| 2 | cncfrss2 24822 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) | |
| 3 | elcncf 24819 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) |
| 5 | 4 | ibi 267 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ∀wral 3049 ∃wrex 3058 ⊆ wss 3899 class class class wbr 5095 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ℂcc 11014 < clt 11156 − cmin 11354 ℝ+crp 12900 abscabs 15151 –cn→ccncf 24806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-map 8761 df-cncf 24808 |
| This theorem is referenced by: cncfss 24829 climcncf 24830 cncfco 24837 cncfcompt2 24838 cncfmpt1f 24844 cncfmpt2ss 24846 negfcncf 24854 divcncf 25385 ivth2 25393 ivthicc 25396 evthicc2 25398 cniccbdd 25399 volivth 25545 cncombf 25596 cnmbf 25597 cniccibl 25779 cnicciblnc 25781 cnmptlimc 25828 cpnord 25874 cpnres 25876 dvrec 25896 rollelem 25930 rolle 25931 cmvth 25932 cmvthOLD 25933 mvth 25934 dvlip 25935 c1liplem1 25938 c1lip1 25939 c1lip2 25940 dveq0 25942 dvgt0lem1 25944 dvgt0lem2 25945 dvgt0 25946 dvlt0 25947 dvge0 25948 dvle 25949 dvivthlem1 25950 dvivth 25952 dvne0 25953 dvne0f1 25954 dvcnvrelem1 25959 dvcnvrelem2 25960 dvcnvre 25961 dvcvx 25962 dvfsumle 25963 dvfsumleOLD 25964 dvfsumge 25965 dvfsumabs 25966 ftc1cn 25987 ftc2 25988 ftc2ditglem 25989 ftc2ditg 25990 itgparts 25991 itgsubstlem 25992 itgsubst 25993 ulmcn 26345 psercn 26373 pserdvlem2 26375 pserdv 26376 sincn 26391 coscn 26392 logtayl 26606 dvcncxp1 26689 leibpi 26889 lgamgulmlem2 26977 ftc2re 34622 fdvposlt 34623 fdvneggt 34624 fdvposle 34625 fdvnegge 34626 ivthALT 36390 knoppcld 36560 knoppndv 36589 ftc1cnnclem 37741 ftc1cnnc 37742 ftc2nc 37752 3factsumint 42128 intlewftc 42164 dvle2 42175 cnioobibld 43321 evthiccabs 45610 cncfmptss 45701 mulc1cncfg 45703 expcnfg 45705 mulcncff 45982 cncfshift 45986 subcncff 45992 cncfcompt 45995 addcncff 45996 cncficcgt0 46000 divcncff 46003 cncfiooicclem1 46005 cncfiooiccre 46007 cncfioobd 46009 dvsubcncf 46036 dvmulcncf 46037 dvdivcncf 46039 ioodvbdlimc1lem1 46043 cnbdibl 46074 itgsubsticclem 46087 itgsubsticc 46088 itgioocnicc 46089 iblcncfioo 46090 itgiccshift 46092 itgsbtaddcnst 46094 fourierdlem18 46237 fourierdlem32 46251 fourierdlem33 46252 fourierdlem39 46258 fourierdlem48 46266 fourierdlem49 46267 fourierdlem58 46276 fourierdlem59 46277 fourierdlem71 46289 fourierdlem73 46291 fourierdlem81 46299 fourierdlem84 46302 fourierdlem85 46303 fourierdlem88 46306 fourierdlem94 46312 fourierdlem97 46315 fourierdlem101 46319 fourierdlem103 46321 fourierdlem104 46322 fourierdlem111 46329 fourierdlem112 46330 fourierdlem113 46331 fouriercn 46344 |
| Copyright terms: Public domain | W3C validator |