![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cncff | Structured version Visualization version GIF version |
Description: A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
cncff | ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfrss 24936 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) | |
2 | cncfrss2 24937 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) | |
3 | elcncf 24934 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) | |
4 | 1, 2, 3 | syl2anc 583 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) |
5 | 4 | ibi 267 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
6 | 5 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 class class class wbr 5166 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 < clt 11324 − cmin 11520 ℝ+crp 13057 abscabs 15283 –cn→ccncf 24921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-cncf 24923 |
This theorem is referenced by: cncfss 24944 climcncf 24945 cncfco 24952 cncfcompt2 24953 cncfmpt1f 24959 cncfmpt2ss 24961 negfcncf 24969 divcncf 25501 ivth2 25509 ivthicc 25512 evthicc2 25514 cniccbdd 25515 volivth 25661 cncombf 25712 cnmbf 25713 cniccibl 25896 cnicciblnc 25898 cnmptlimc 25945 cpnord 25991 cpnres 25993 dvrec 26013 rollelem 26047 rolle 26048 cmvth 26049 cmvthOLD 26050 mvth 26051 dvlip 26052 c1liplem1 26055 c1lip1 26056 c1lip2 26057 dveq0 26059 dvgt0lem1 26061 dvgt0lem2 26062 dvgt0 26063 dvlt0 26064 dvge0 26065 dvle 26066 dvivthlem1 26067 dvivth 26069 dvne0 26070 dvne0f1 26071 dvcnvrelem1 26076 dvcnvrelem2 26077 dvcnvre 26078 dvcvx 26079 dvfsumle 26080 dvfsumleOLD 26081 dvfsumge 26082 dvfsumabs 26083 ftc1cn 26104 ftc2 26105 ftc2ditglem 26106 ftc2ditg 26107 itgparts 26108 itgsubstlem 26109 itgsubst 26110 ulmcn 26460 psercn 26488 pserdvlem2 26490 pserdv 26491 sincn 26506 coscn 26507 logtayl 26720 dvcncxp1 26803 leibpi 27003 lgamgulmlem2 27091 ftc2re 34575 fdvposlt 34576 fdvneggt 34577 fdvposle 34578 fdvnegge 34579 ivthALT 36301 knoppcld 36471 knoppndv 36500 ftc1cnnclem 37651 ftc1cnnc 37652 ftc2nc 37662 3factsumint 41982 intlewftc 42018 dvle2 42029 cnioobibld 43175 evthiccabs 45414 cncfmptss 45508 mulc1cncfg 45510 expcnfg 45512 mulcncff 45791 cncfshift 45795 subcncff 45801 cncfcompt 45804 addcncff 45805 cncficcgt0 45809 divcncff 45812 cncfiooicclem1 45814 cncfiooiccre 45816 cncfioobd 45818 dvsubcncf 45845 dvmulcncf 45846 dvdivcncf 45848 ioodvbdlimc1lem1 45852 cnbdibl 45883 itgsubsticclem 45896 itgsubsticc 45897 itgioocnicc 45898 iblcncfioo 45899 itgiccshift 45901 itgsbtaddcnst 45903 fourierdlem18 46046 fourierdlem32 46060 fourierdlem33 46061 fourierdlem39 46067 fourierdlem48 46075 fourierdlem49 46076 fourierdlem58 46085 fourierdlem59 46086 fourierdlem71 46098 fourierdlem73 46100 fourierdlem81 46108 fourierdlem84 46111 fourierdlem85 46112 fourierdlem88 46115 fourierdlem94 46121 fourierdlem97 46124 fourierdlem101 46128 fourierdlem103 46130 fourierdlem104 46131 fourierdlem111 46138 fourierdlem112 46139 fourierdlem113 46140 fouriercn 46153 |
Copyright terms: Public domain | W3C validator |