| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cncfcnvcn | Structured version Visualization version GIF version | ||
| Description: Rewrite cmphaushmeo 23694 for functions on the complex numbers. (Contributed by Mario Carneiro, 19-Feb-2015.) |
| Ref | Expression |
|---|---|
| cncfcnvcn.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| cncfcnvcn.k | ⊢ 𝐾 = (𝐽 ↾t 𝑋) |
| Ref | Expression |
|---|---|
| cncfcnvcn | ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→𝑌 ↔ ◡𝐹 ∈ (𝑌–cn→𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝐹 ∈ (𝑋–cn→𝑌)) | |
| 2 | cncfrss 24791 | . . . . . 6 ⊢ (𝐹 ∈ (𝑋–cn→𝑌) → 𝑋 ⊆ ℂ) | |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑋 ⊆ ℂ) |
| 4 | cncfrss2 24792 | . . . . . 6 ⊢ (𝐹 ∈ (𝑋–cn→𝑌) → 𝑌 ⊆ ℂ) | |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑌 ⊆ ℂ) |
| 6 | cncfcnvcn.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 7 | cncfcnvcn.k | . . . . . 6 ⊢ 𝐾 = (𝐽 ↾t 𝑋) | |
| 8 | eqid 2730 | . . . . . 6 ⊢ (𝐽 ↾t 𝑌) = (𝐽 ↾t 𝑌) | |
| 9 | 6, 7, 8 | cncfcn 24810 | . . . . 5 ⊢ ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋–cn→𝑌) = (𝐾 Cn (𝐽 ↾t 𝑌))) |
| 10 | 3, 5, 9 | syl2anc 584 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝑋–cn→𝑌) = (𝐾 Cn (𝐽 ↾t 𝑌))) |
| 11 | 1, 10 | eleqtrd 2831 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝐹 ∈ (𝐾 Cn (𝐽 ↾t 𝑌))) |
| 12 | ishmeo 23653 | . . . 4 ⊢ (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ (𝐹 ∈ (𝐾 Cn (𝐽 ↾t 𝑌)) ∧ ◡𝐹 ∈ ((𝐽 ↾t 𝑌) Cn 𝐾))) | |
| 13 | 12 | baib 535 | . . 3 ⊢ (𝐹 ∈ (𝐾 Cn (𝐽 ↾t 𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ ◡𝐹 ∈ ((𝐽 ↾t 𝑌) Cn 𝐾))) |
| 14 | 11, 13 | syl 17 | . 2 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ ◡𝐹 ∈ ((𝐽 ↾t 𝑌) Cn 𝐾))) |
| 15 | 6 | cnfldtop 24678 | . . . . . 6 ⊢ 𝐽 ∈ Top |
| 16 | 6 | cnfldtopon 24677 | . . . . . . . 8 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
| 17 | 16 | toponunii 22810 | . . . . . . 7 ⊢ ℂ = ∪ 𝐽 |
| 18 | 17 | restuni 23056 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ℂ) → 𝑋 = ∪ (𝐽 ↾t 𝑋)) |
| 19 | 15, 3, 18 | sylancr 587 | . . . . 5 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑋 = ∪ (𝐽 ↾t 𝑋)) |
| 20 | 7 | unieqi 4886 | . . . . 5 ⊢ ∪ 𝐾 = ∪ (𝐽 ↾t 𝑋) |
| 21 | 19, 20 | eqtr4di 2783 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑋 = ∪ 𝐾) |
| 22 | 21 | f1oeq2d 6799 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→∪ (𝐽 ↾t 𝑌) ↔ 𝐹:∪ 𝐾–1-1-onto→∪ (𝐽 ↾t 𝑌))) |
| 23 | 17 | restuni 23056 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ ℂ) → 𝑌 = ∪ (𝐽 ↾t 𝑌)) |
| 24 | 15, 5, 23 | sylancr 587 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑌 = ∪ (𝐽 ↾t 𝑌)) |
| 25 | 24 | f1oeq3d 6800 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→𝑌 ↔ 𝐹:𝑋–1-1-onto→∪ (𝐽 ↾t 𝑌))) |
| 26 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝐾 ∈ Comp) | |
| 27 | 6 | cnfldhaus 24679 | . . . . 5 ⊢ 𝐽 ∈ Haus |
| 28 | cnex 11156 | . . . . . . 7 ⊢ ℂ ∈ V | |
| 29 | 28 | ssex 5279 | . . . . . 6 ⊢ (𝑌 ⊆ ℂ → 𝑌 ∈ V) |
| 30 | 5, 29 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑌 ∈ V) |
| 31 | resthaus 23262 | . . . . 5 ⊢ ((𝐽 ∈ Haus ∧ 𝑌 ∈ V) → (𝐽 ↾t 𝑌) ∈ Haus) | |
| 32 | 27, 30, 31 | sylancr 587 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐽 ↾t 𝑌) ∈ Haus) |
| 33 | eqid 2730 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 34 | eqid 2730 | . . . . 5 ⊢ ∪ (𝐽 ↾t 𝑌) = ∪ (𝐽 ↾t 𝑌) | |
| 35 | 33, 34 | cmphaushmeo 23694 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ (𝐽 ↾t 𝑌) ∈ Haus ∧ 𝐹 ∈ (𝐾 Cn (𝐽 ↾t 𝑌))) → (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ 𝐹:∪ 𝐾–1-1-onto→∪ (𝐽 ↾t 𝑌))) |
| 36 | 26, 32, 11, 35 | syl3anc 1373 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ 𝐹:∪ 𝐾–1-1-onto→∪ (𝐽 ↾t 𝑌))) |
| 37 | 22, 25, 36 | 3bitr4d 311 | . 2 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→𝑌 ↔ 𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)))) |
| 38 | 6, 8, 7 | cncfcn 24810 | . . . 4 ⊢ ((𝑌 ⊆ ℂ ∧ 𝑋 ⊆ ℂ) → (𝑌–cn→𝑋) = ((𝐽 ↾t 𝑌) Cn 𝐾)) |
| 39 | 5, 3, 38 | syl2anc 584 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝑌–cn→𝑋) = ((𝐽 ↾t 𝑌) Cn 𝐾)) |
| 40 | 39 | eleq2d 2815 | . 2 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (◡𝐹 ∈ (𝑌–cn→𝑋) ↔ ◡𝐹 ∈ ((𝐽 ↾t 𝑌) Cn 𝐾))) |
| 41 | 14, 37, 40 | 3bitr4d 311 | 1 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→𝑌 ↔ ◡𝐹 ∈ (𝑌–cn→𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 ∪ cuni 4874 ◡ccnv 5640 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ↾t crest 17390 TopOpenctopn 17391 ℂfldccnfld 21271 Topctop 22787 Cn ccn 23118 Hauscha 23202 Compccmp 23280 Homeochmeo 23647 –cn→ccncf 24776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fi 9369 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-icc 13320 df-fz 13476 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-rest 17392 df-topn 17393 df-topgen 17413 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-cls 22915 df-cn 23121 df-cnp 23122 df-haus 23209 df-cmp 23281 df-hmeo 23649 df-xms 24215 df-ms 24216 df-cncf 24778 |
| This theorem is referenced by: dvcnvrelem2 25930 |
| Copyright terms: Public domain | W3C validator |