| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cncfcnvcn | Structured version Visualization version GIF version | ||
| Description: Rewrite cmphaushmeo 23808 for functions on the complex numbers. (Contributed by Mario Carneiro, 19-Feb-2015.) |
| Ref | Expression |
|---|---|
| cncfcnvcn.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| cncfcnvcn.k | ⊢ 𝐾 = (𝐽 ↾t 𝑋) |
| Ref | Expression |
|---|---|
| cncfcnvcn | ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→𝑌 ↔ ◡𝐹 ∈ (𝑌–cn→𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝐹 ∈ (𝑋–cn→𝑌)) | |
| 2 | cncfrss 24917 | . . . . . 6 ⊢ (𝐹 ∈ (𝑋–cn→𝑌) → 𝑋 ⊆ ℂ) | |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑋 ⊆ ℂ) |
| 4 | cncfrss2 24918 | . . . . . 6 ⊢ (𝐹 ∈ (𝑋–cn→𝑌) → 𝑌 ⊆ ℂ) | |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑌 ⊆ ℂ) |
| 6 | cncfcnvcn.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 7 | cncfcnvcn.k | . . . . . 6 ⊢ 𝐾 = (𝐽 ↾t 𝑋) | |
| 8 | eqid 2737 | . . . . . 6 ⊢ (𝐽 ↾t 𝑌) = (𝐽 ↾t 𝑌) | |
| 9 | 6, 7, 8 | cncfcn 24936 | . . . . 5 ⊢ ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋–cn→𝑌) = (𝐾 Cn (𝐽 ↾t 𝑌))) |
| 10 | 3, 5, 9 | syl2anc 584 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝑋–cn→𝑌) = (𝐾 Cn (𝐽 ↾t 𝑌))) |
| 11 | 1, 10 | eleqtrd 2843 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝐹 ∈ (𝐾 Cn (𝐽 ↾t 𝑌))) |
| 12 | ishmeo 23767 | . . . 4 ⊢ (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ (𝐹 ∈ (𝐾 Cn (𝐽 ↾t 𝑌)) ∧ ◡𝐹 ∈ ((𝐽 ↾t 𝑌) Cn 𝐾))) | |
| 13 | 12 | baib 535 | . . 3 ⊢ (𝐹 ∈ (𝐾 Cn (𝐽 ↾t 𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ ◡𝐹 ∈ ((𝐽 ↾t 𝑌) Cn 𝐾))) |
| 14 | 11, 13 | syl 17 | . 2 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ ◡𝐹 ∈ ((𝐽 ↾t 𝑌) Cn 𝐾))) |
| 15 | 6 | cnfldtop 24804 | . . . . . 6 ⊢ 𝐽 ∈ Top |
| 16 | 6 | cnfldtopon 24803 | . . . . . . . 8 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
| 17 | 16 | toponunii 22922 | . . . . . . 7 ⊢ ℂ = ∪ 𝐽 |
| 18 | 17 | restuni 23170 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ℂ) → 𝑋 = ∪ (𝐽 ↾t 𝑋)) |
| 19 | 15, 3, 18 | sylancr 587 | . . . . 5 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑋 = ∪ (𝐽 ↾t 𝑋)) |
| 20 | 7 | unieqi 4919 | . . . . 5 ⊢ ∪ 𝐾 = ∪ (𝐽 ↾t 𝑋) |
| 21 | 19, 20 | eqtr4di 2795 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑋 = ∪ 𝐾) |
| 22 | 21 | f1oeq2d 6844 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→∪ (𝐽 ↾t 𝑌) ↔ 𝐹:∪ 𝐾–1-1-onto→∪ (𝐽 ↾t 𝑌))) |
| 23 | 17 | restuni 23170 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ ℂ) → 𝑌 = ∪ (𝐽 ↾t 𝑌)) |
| 24 | 15, 5, 23 | sylancr 587 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑌 = ∪ (𝐽 ↾t 𝑌)) |
| 25 | 24 | f1oeq3d 6845 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→𝑌 ↔ 𝐹:𝑋–1-1-onto→∪ (𝐽 ↾t 𝑌))) |
| 26 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝐾 ∈ Comp) | |
| 27 | 6 | cnfldhaus 24805 | . . . . 5 ⊢ 𝐽 ∈ Haus |
| 28 | cnex 11236 | . . . . . . 7 ⊢ ℂ ∈ V | |
| 29 | 28 | ssex 5321 | . . . . . 6 ⊢ (𝑌 ⊆ ℂ → 𝑌 ∈ V) |
| 30 | 5, 29 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑌 ∈ V) |
| 31 | resthaus 23376 | . . . . 5 ⊢ ((𝐽 ∈ Haus ∧ 𝑌 ∈ V) → (𝐽 ↾t 𝑌) ∈ Haus) | |
| 32 | 27, 30, 31 | sylancr 587 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐽 ↾t 𝑌) ∈ Haus) |
| 33 | eqid 2737 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 34 | eqid 2737 | . . . . 5 ⊢ ∪ (𝐽 ↾t 𝑌) = ∪ (𝐽 ↾t 𝑌) | |
| 35 | 33, 34 | cmphaushmeo 23808 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ (𝐽 ↾t 𝑌) ∈ Haus ∧ 𝐹 ∈ (𝐾 Cn (𝐽 ↾t 𝑌))) → (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ 𝐹:∪ 𝐾–1-1-onto→∪ (𝐽 ↾t 𝑌))) |
| 36 | 26, 32, 11, 35 | syl3anc 1373 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ 𝐹:∪ 𝐾–1-1-onto→∪ (𝐽 ↾t 𝑌))) |
| 37 | 22, 25, 36 | 3bitr4d 311 | . 2 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→𝑌 ↔ 𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)))) |
| 38 | 6, 8, 7 | cncfcn 24936 | . . . 4 ⊢ ((𝑌 ⊆ ℂ ∧ 𝑋 ⊆ ℂ) → (𝑌–cn→𝑋) = ((𝐽 ↾t 𝑌) Cn 𝐾)) |
| 39 | 5, 3, 38 | syl2anc 584 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝑌–cn→𝑋) = ((𝐽 ↾t 𝑌) Cn 𝐾)) |
| 40 | 39 | eleq2d 2827 | . 2 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (◡𝐹 ∈ (𝑌–cn→𝑋) ↔ ◡𝐹 ∈ ((𝐽 ↾t 𝑌) Cn 𝐾))) |
| 41 | 14, 37, 40 | 3bitr4d 311 | 1 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→𝑌 ↔ ◡𝐹 ∈ (𝑌–cn→𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ⊆ wss 3951 ∪ cuni 4907 ◡ccnv 5684 –1-1-onto→wf1o 6560 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 ↾t crest 17465 TopOpenctopn 17466 ℂfldccnfld 21364 Topctop 22899 Cn ccn 23232 Hauscha 23316 Compccmp 23394 Homeochmeo 23761 –cn→ccncf 24902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fi 9451 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-icc 13394 df-fz 13548 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-mulr 17311 df-starv 17312 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-rest 17467 df-topn 17468 df-topgen 17488 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-cnfld 21365 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cld 23027 df-cls 23029 df-cn 23235 df-cnp 23236 df-haus 23323 df-cmp 23395 df-hmeo 23763 df-xms 24330 df-ms 24331 df-cncf 24904 |
| This theorem is referenced by: dvcnvrelem2 26057 |
| Copyright terms: Public domain | W3C validator |