MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfcnvcn Structured version   Visualization version   GIF version

Theorem cncfcnvcn 23136
Description: Rewrite cmphaushmeo 22016 for functions on the complex numbers. (Contributed by Mario Carneiro, 19-Feb-2015.)
Hypotheses
Ref Expression
cncfcnvcn.j 𝐽 = (TopOpen‘ℂfld)
cncfcnvcn.k 𝐾 = (𝐽t 𝑋)
Assertion
Ref Expression
cncfcnvcn ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑌cn𝑋)))

Proof of Theorem cncfcnvcn
StepHypRef Expression
1 simpr 479 . . . 4 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝐹 ∈ (𝑋cn𝑌))
2 cncfrss 23106 . . . . . 6 (𝐹 ∈ (𝑋cn𝑌) → 𝑋 ⊆ ℂ)
32adantl 475 . . . . 5 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝑋 ⊆ ℂ)
4 cncfrss2 23107 . . . . . 6 (𝐹 ∈ (𝑋cn𝑌) → 𝑌 ⊆ ℂ)
54adantl 475 . . . . 5 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝑌 ⊆ ℂ)
6 cncfcnvcn.j . . . . . 6 𝐽 = (TopOpen‘ℂfld)
7 cncfcnvcn.k . . . . . 6 𝐾 = (𝐽t 𝑋)
8 eqid 2778 . . . . . 6 (𝐽t 𝑌) = (𝐽t 𝑌)
96, 7, 8cncfcn 23124 . . . . 5 ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋cn𝑌) = (𝐾 Cn (𝐽t 𝑌)))
103, 5, 9syl2anc 579 . . . 4 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝑋cn𝑌) = (𝐾 Cn (𝐽t 𝑌)))
111, 10eleqtrd 2861 . . 3 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝐹 ∈ (𝐾 Cn (𝐽t 𝑌)))
12 ishmeo 21975 . . . 4 (𝐹 ∈ (𝐾Homeo(𝐽t 𝑌)) ↔ (𝐹 ∈ (𝐾 Cn (𝐽t 𝑌)) ∧ 𝐹 ∈ ((𝐽t 𝑌) Cn 𝐾)))
1312baib 531 . . 3 (𝐹 ∈ (𝐾 Cn (𝐽t 𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽t 𝑌)) ↔ 𝐹 ∈ ((𝐽t 𝑌) Cn 𝐾)))
1411, 13syl 17 . 2 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽t 𝑌)) ↔ 𝐹 ∈ ((𝐽t 𝑌) Cn 𝐾)))
156cnfldtop 22999 . . . . . 6 𝐽 ∈ Top
166cnfldtopon 22998 . . . . . . . 8 𝐽 ∈ (TopOn‘ℂ)
1716toponunii 21132 . . . . . . 7 ℂ = 𝐽
1817restuni 21378 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑋 ⊆ ℂ) → 𝑋 = (𝐽t 𝑋))
1915, 3, 18sylancr 581 . . . . 5 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝑋 = (𝐽t 𝑋))
207unieqi 4682 . . . . 5 𝐾 = (𝐽t 𝑋)
2119, 20syl6eqr 2832 . . . 4 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝑋 = 𝐾)
2221f1oeq2d 6389 . . 3 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹:𝑋1-1-onto (𝐽t 𝑌) ↔ 𝐹: 𝐾1-1-onto (𝐽t 𝑌)))
2317restuni 21378 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌 ⊆ ℂ) → 𝑌 = (𝐽t 𝑌))
2415, 5, 23sylancr 581 . . . 4 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝑌 = (𝐽t 𝑌))
25 f1oeq3 6384 . . . 4 (𝑌 = (𝐽t 𝑌) → (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1-onto (𝐽t 𝑌)))
2624, 25syl 17 . . 3 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1-onto (𝐽t 𝑌)))
27 simpl 476 . . . 4 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝐾 ∈ Comp)
286cnfldhaus 23000 . . . . 5 𝐽 ∈ Haus
29 cnex 10355 . . . . . . 7 ℂ ∈ V
3029ssex 5041 . . . . . 6 (𝑌 ⊆ ℂ → 𝑌 ∈ V)
315, 30syl 17 . . . . 5 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝑌 ∈ V)
32 resthaus 21584 . . . . 5 ((𝐽 ∈ Haus ∧ 𝑌 ∈ V) → (𝐽t 𝑌) ∈ Haus)
3328, 31, 32sylancr 581 . . . 4 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐽t 𝑌) ∈ Haus)
34 eqid 2778 . . . . 5 𝐾 = 𝐾
35 eqid 2778 . . . . 5 (𝐽t 𝑌) = (𝐽t 𝑌)
3634, 35cmphaushmeo 22016 . . . 4 ((𝐾 ∈ Comp ∧ (𝐽t 𝑌) ∈ Haus ∧ 𝐹 ∈ (𝐾 Cn (𝐽t 𝑌))) → (𝐹 ∈ (𝐾Homeo(𝐽t 𝑌)) ↔ 𝐹: 𝐾1-1-onto (𝐽t 𝑌)))
3727, 33, 11, 36syl3anc 1439 . . 3 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽t 𝑌)) ↔ 𝐹: 𝐾1-1-onto (𝐽t 𝑌)))
3822, 26, 373bitr4d 303 . 2 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝐾Homeo(𝐽t 𝑌))))
396, 8, 7cncfcn 23124 . . . 4 ((𝑌 ⊆ ℂ ∧ 𝑋 ⊆ ℂ) → (𝑌cn𝑋) = ((𝐽t 𝑌) Cn 𝐾))
405, 3, 39syl2anc 579 . . 3 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝑌cn𝑋) = ((𝐽t 𝑌) Cn 𝐾))
4140eleq2d 2845 . 2 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹 ∈ (𝑌cn𝑋) ↔ 𝐹 ∈ ((𝐽t 𝑌) Cn 𝐾)))
4214, 38, 413bitr4d 303 1 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑌cn𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  Vcvv 3398  wss 3792   cuni 4673  ccnv 5356  1-1-ontowf1o 6136  cfv 6137  (class class class)co 6924  cc 10272  t crest 16471  TopOpenctopn 16472  fldccnfld 20146  Topctop 21109   Cn ccn 21440  Hauscha 21524  Compccmp 21602  Homeochmeo 21969  cnccncf 23091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fi 8607  df-sup 8638  df-inf 8639  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-4 11444  df-5 11445  df-6 11446  df-7 11447  df-8 11448  df-9 11449  df-n0 11647  df-z 11733  df-dec 11850  df-uz 11997  df-q 12100  df-rp 12142  df-xneg 12261  df-xadd 12262  df-xmul 12263  df-icc 12498  df-fz 12648  df-seq 13124  df-exp 13183  df-cj 14250  df-re 14251  df-im 14252  df-sqrt 14386  df-abs 14387  df-struct 16261  df-ndx 16262  df-slot 16263  df-base 16265  df-plusg 16355  df-mulr 16356  df-starv 16357  df-tset 16361  df-ple 16362  df-ds 16364  df-unif 16365  df-rest 16473  df-topn 16474  df-topgen 16494  df-psmet 20138  df-xmet 20139  df-met 20140  df-bl 20141  df-mopn 20142  df-cnfld 20147  df-top 21110  df-topon 21127  df-topsp 21149  df-bases 21162  df-cld 21235  df-cls 21237  df-cn 21443  df-cnp 21444  df-haus 21531  df-cmp 21603  df-hmeo 21971  df-xms 22537  df-ms 22538  df-cncf 23093
This theorem is referenced by:  dvcnvrelem2  24222
  Copyright terms: Public domain W3C validator