| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cncfcnvcn | Structured version Visualization version GIF version | ||
| Description: Rewrite cmphaushmeo 23738 for functions on the complex numbers. (Contributed by Mario Carneiro, 19-Feb-2015.) |
| Ref | Expression |
|---|---|
| cncfcnvcn.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| cncfcnvcn.k | ⊢ 𝐾 = (𝐽 ↾t 𝑋) |
| Ref | Expression |
|---|---|
| cncfcnvcn | ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→𝑌 ↔ ◡𝐹 ∈ (𝑌–cn→𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝐹 ∈ (𝑋–cn→𝑌)) | |
| 2 | cncfrss 24835 | . . . . . 6 ⊢ (𝐹 ∈ (𝑋–cn→𝑌) → 𝑋 ⊆ ℂ) | |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑋 ⊆ ℂ) |
| 4 | cncfrss2 24836 | . . . . . 6 ⊢ (𝐹 ∈ (𝑋–cn→𝑌) → 𝑌 ⊆ ℂ) | |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑌 ⊆ ℂ) |
| 6 | cncfcnvcn.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 7 | cncfcnvcn.k | . . . . . 6 ⊢ 𝐾 = (𝐽 ↾t 𝑋) | |
| 8 | eqid 2735 | . . . . . 6 ⊢ (𝐽 ↾t 𝑌) = (𝐽 ↾t 𝑌) | |
| 9 | 6, 7, 8 | cncfcn 24854 | . . . . 5 ⊢ ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋–cn→𝑌) = (𝐾 Cn (𝐽 ↾t 𝑌))) |
| 10 | 3, 5, 9 | syl2anc 584 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝑋–cn→𝑌) = (𝐾 Cn (𝐽 ↾t 𝑌))) |
| 11 | 1, 10 | eleqtrd 2836 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝐹 ∈ (𝐾 Cn (𝐽 ↾t 𝑌))) |
| 12 | ishmeo 23697 | . . . 4 ⊢ (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ (𝐹 ∈ (𝐾 Cn (𝐽 ↾t 𝑌)) ∧ ◡𝐹 ∈ ((𝐽 ↾t 𝑌) Cn 𝐾))) | |
| 13 | 12 | baib 535 | . . 3 ⊢ (𝐹 ∈ (𝐾 Cn (𝐽 ↾t 𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ ◡𝐹 ∈ ((𝐽 ↾t 𝑌) Cn 𝐾))) |
| 14 | 11, 13 | syl 17 | . 2 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ ◡𝐹 ∈ ((𝐽 ↾t 𝑌) Cn 𝐾))) |
| 15 | 6 | cnfldtop 24722 | . . . . . 6 ⊢ 𝐽 ∈ Top |
| 16 | 6 | cnfldtopon 24721 | . . . . . . . 8 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
| 17 | 16 | toponunii 22854 | . . . . . . 7 ⊢ ℂ = ∪ 𝐽 |
| 18 | 17 | restuni 23100 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ℂ) → 𝑋 = ∪ (𝐽 ↾t 𝑋)) |
| 19 | 15, 3, 18 | sylancr 587 | . . . . 5 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑋 = ∪ (𝐽 ↾t 𝑋)) |
| 20 | 7 | unieqi 4895 | . . . . 5 ⊢ ∪ 𝐾 = ∪ (𝐽 ↾t 𝑋) |
| 21 | 19, 20 | eqtr4di 2788 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑋 = ∪ 𝐾) |
| 22 | 21 | f1oeq2d 6814 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→∪ (𝐽 ↾t 𝑌) ↔ 𝐹:∪ 𝐾–1-1-onto→∪ (𝐽 ↾t 𝑌))) |
| 23 | 17 | restuni 23100 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ ℂ) → 𝑌 = ∪ (𝐽 ↾t 𝑌)) |
| 24 | 15, 5, 23 | sylancr 587 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑌 = ∪ (𝐽 ↾t 𝑌)) |
| 25 | 24 | f1oeq3d 6815 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→𝑌 ↔ 𝐹:𝑋–1-1-onto→∪ (𝐽 ↾t 𝑌))) |
| 26 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝐾 ∈ Comp) | |
| 27 | 6 | cnfldhaus 24723 | . . . . 5 ⊢ 𝐽 ∈ Haus |
| 28 | cnex 11210 | . . . . . . 7 ⊢ ℂ ∈ V | |
| 29 | 28 | ssex 5291 | . . . . . 6 ⊢ (𝑌 ⊆ ℂ → 𝑌 ∈ V) |
| 30 | 5, 29 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑌 ∈ V) |
| 31 | resthaus 23306 | . . . . 5 ⊢ ((𝐽 ∈ Haus ∧ 𝑌 ∈ V) → (𝐽 ↾t 𝑌) ∈ Haus) | |
| 32 | 27, 30, 31 | sylancr 587 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐽 ↾t 𝑌) ∈ Haus) |
| 33 | eqid 2735 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 34 | eqid 2735 | . . . . 5 ⊢ ∪ (𝐽 ↾t 𝑌) = ∪ (𝐽 ↾t 𝑌) | |
| 35 | 33, 34 | cmphaushmeo 23738 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ (𝐽 ↾t 𝑌) ∈ Haus ∧ 𝐹 ∈ (𝐾 Cn (𝐽 ↾t 𝑌))) → (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ 𝐹:∪ 𝐾–1-1-onto→∪ (𝐽 ↾t 𝑌))) |
| 36 | 26, 32, 11, 35 | syl3anc 1373 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ 𝐹:∪ 𝐾–1-1-onto→∪ (𝐽 ↾t 𝑌))) |
| 37 | 22, 25, 36 | 3bitr4d 311 | . 2 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→𝑌 ↔ 𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)))) |
| 38 | 6, 8, 7 | cncfcn 24854 | . . . 4 ⊢ ((𝑌 ⊆ ℂ ∧ 𝑋 ⊆ ℂ) → (𝑌–cn→𝑋) = ((𝐽 ↾t 𝑌) Cn 𝐾)) |
| 39 | 5, 3, 38 | syl2anc 584 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝑌–cn→𝑋) = ((𝐽 ↾t 𝑌) Cn 𝐾)) |
| 40 | 39 | eleq2d 2820 | . 2 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (◡𝐹 ∈ (𝑌–cn→𝑋) ↔ ◡𝐹 ∈ ((𝐽 ↾t 𝑌) Cn 𝐾))) |
| 41 | 14, 37, 40 | 3bitr4d 311 | 1 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→𝑌 ↔ ◡𝐹 ∈ (𝑌–cn→𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 ∪ cuni 4883 ◡ccnv 5653 –1-1-onto→wf1o 6530 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 ↾t crest 17434 TopOpenctopn 17435 ℂfldccnfld 21315 Topctop 22831 Cn ccn 23162 Hauscha 23246 Compccmp 23324 Homeochmeo 23691 –cn→ccncf 24820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fi 9423 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-icc 13369 df-fz 13525 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-mulr 17285 df-starv 17286 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-rest 17436 df-topn 17437 df-topgen 17457 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cld 22957 df-cls 22959 df-cn 23165 df-cnp 23166 df-haus 23253 df-cmp 23325 df-hmeo 23693 df-xms 24259 df-ms 24260 df-cncf 24822 |
| This theorem is referenced by: dvcnvrelem2 25975 |
| Copyright terms: Public domain | W3C validator |