MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfcnvcn Structured version   Visualization version   GIF version

Theorem cncfcnvcn 24952
Description: Rewrite cmphaushmeo 23808 for functions on the complex numbers. (Contributed by Mario Carneiro, 19-Feb-2015.)
Hypotheses
Ref Expression
cncfcnvcn.j 𝐽 = (TopOpen‘ℂfld)
cncfcnvcn.k 𝐾 = (𝐽t 𝑋)
Assertion
Ref Expression
cncfcnvcn ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑌cn𝑋)))

Proof of Theorem cncfcnvcn
StepHypRef Expression
1 simpr 484 . . . 4 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝐹 ∈ (𝑋cn𝑌))
2 cncfrss 24917 . . . . . 6 (𝐹 ∈ (𝑋cn𝑌) → 𝑋 ⊆ ℂ)
32adantl 481 . . . . 5 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝑋 ⊆ ℂ)
4 cncfrss2 24918 . . . . . 6 (𝐹 ∈ (𝑋cn𝑌) → 𝑌 ⊆ ℂ)
54adantl 481 . . . . 5 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝑌 ⊆ ℂ)
6 cncfcnvcn.j . . . . . 6 𝐽 = (TopOpen‘ℂfld)
7 cncfcnvcn.k . . . . . 6 𝐾 = (𝐽t 𝑋)
8 eqid 2737 . . . . . 6 (𝐽t 𝑌) = (𝐽t 𝑌)
96, 7, 8cncfcn 24936 . . . . 5 ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋cn𝑌) = (𝐾 Cn (𝐽t 𝑌)))
103, 5, 9syl2anc 584 . . . 4 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝑋cn𝑌) = (𝐾 Cn (𝐽t 𝑌)))
111, 10eleqtrd 2843 . . 3 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝐹 ∈ (𝐾 Cn (𝐽t 𝑌)))
12 ishmeo 23767 . . . 4 (𝐹 ∈ (𝐾Homeo(𝐽t 𝑌)) ↔ (𝐹 ∈ (𝐾 Cn (𝐽t 𝑌)) ∧ 𝐹 ∈ ((𝐽t 𝑌) Cn 𝐾)))
1312baib 535 . . 3 (𝐹 ∈ (𝐾 Cn (𝐽t 𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽t 𝑌)) ↔ 𝐹 ∈ ((𝐽t 𝑌) Cn 𝐾)))
1411, 13syl 17 . 2 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽t 𝑌)) ↔ 𝐹 ∈ ((𝐽t 𝑌) Cn 𝐾)))
156cnfldtop 24804 . . . . . 6 𝐽 ∈ Top
166cnfldtopon 24803 . . . . . . . 8 𝐽 ∈ (TopOn‘ℂ)
1716toponunii 22922 . . . . . . 7 ℂ = 𝐽
1817restuni 23170 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑋 ⊆ ℂ) → 𝑋 = (𝐽t 𝑋))
1915, 3, 18sylancr 587 . . . . 5 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝑋 = (𝐽t 𝑋))
207unieqi 4919 . . . . 5 𝐾 = (𝐽t 𝑋)
2119, 20eqtr4di 2795 . . . 4 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝑋 = 𝐾)
2221f1oeq2d 6844 . . 3 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹:𝑋1-1-onto (𝐽t 𝑌) ↔ 𝐹: 𝐾1-1-onto (𝐽t 𝑌)))
2317restuni 23170 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌 ⊆ ℂ) → 𝑌 = (𝐽t 𝑌))
2415, 5, 23sylancr 587 . . . 4 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝑌 = (𝐽t 𝑌))
2524f1oeq3d 6845 . . 3 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1-onto (𝐽t 𝑌)))
26 simpl 482 . . . 4 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝐾 ∈ Comp)
276cnfldhaus 24805 . . . . 5 𝐽 ∈ Haus
28 cnex 11236 . . . . . . 7 ℂ ∈ V
2928ssex 5321 . . . . . 6 (𝑌 ⊆ ℂ → 𝑌 ∈ V)
305, 29syl 17 . . . . 5 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝑌 ∈ V)
31 resthaus 23376 . . . . 5 ((𝐽 ∈ Haus ∧ 𝑌 ∈ V) → (𝐽t 𝑌) ∈ Haus)
3227, 30, 31sylancr 587 . . . 4 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐽t 𝑌) ∈ Haus)
33 eqid 2737 . . . . 5 𝐾 = 𝐾
34 eqid 2737 . . . . 5 (𝐽t 𝑌) = (𝐽t 𝑌)
3533, 34cmphaushmeo 23808 . . . 4 ((𝐾 ∈ Comp ∧ (𝐽t 𝑌) ∈ Haus ∧ 𝐹 ∈ (𝐾 Cn (𝐽t 𝑌))) → (𝐹 ∈ (𝐾Homeo(𝐽t 𝑌)) ↔ 𝐹: 𝐾1-1-onto (𝐽t 𝑌)))
3626, 32, 11, 35syl3anc 1373 . . 3 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽t 𝑌)) ↔ 𝐹: 𝐾1-1-onto (𝐽t 𝑌)))
3722, 25, 363bitr4d 311 . 2 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝐾Homeo(𝐽t 𝑌))))
386, 8, 7cncfcn 24936 . . . 4 ((𝑌 ⊆ ℂ ∧ 𝑋 ⊆ ℂ) → (𝑌cn𝑋) = ((𝐽t 𝑌) Cn 𝐾))
395, 3, 38syl2anc 584 . . 3 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝑌cn𝑋) = ((𝐽t 𝑌) Cn 𝐾))
4039eleq2d 2827 . 2 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹 ∈ (𝑌cn𝑋) ↔ 𝐹 ∈ ((𝐽t 𝑌) Cn 𝐾)))
4114, 37, 403bitr4d 311 1 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑌cn𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951   cuni 4907  ccnv 5684  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  cc 11153  t crest 17465  TopOpenctopn 17466  fldccnfld 21364  Topctop 22899   Cn ccn 23232  Hauscha 23316  Compccmp 23394  Homeochmeo 23761  cnccncf 24902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-icc 13394  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-rest 17467  df-topn 17468  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-cls 23029  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-hmeo 23763  df-xms 24330  df-ms 24331  df-cncf 24904
This theorem is referenced by:  dvcnvrelem2  26057
  Copyright terms: Public domain W3C validator