MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfcnvcn Structured version   Visualization version   GIF version

Theorem cncfcnvcn 23530
Description: Rewrite cmphaushmeo 22405 for functions on the complex numbers. (Contributed by Mario Carneiro, 19-Feb-2015.)
Hypotheses
Ref Expression
cncfcnvcn.j 𝐽 = (TopOpen‘ℂfld)
cncfcnvcn.k 𝐾 = (𝐽t 𝑋)
Assertion
Ref Expression
cncfcnvcn ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑌cn𝑋)))

Proof of Theorem cncfcnvcn
StepHypRef Expression
1 simpr 488 . . . 4 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝐹 ∈ (𝑋cn𝑌))
2 cncfrss 23496 . . . . . 6 (𝐹 ∈ (𝑋cn𝑌) → 𝑋 ⊆ ℂ)
32adantl 485 . . . . 5 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝑋 ⊆ ℂ)
4 cncfrss2 23497 . . . . . 6 (𝐹 ∈ (𝑋cn𝑌) → 𝑌 ⊆ ℂ)
54adantl 485 . . . . 5 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝑌 ⊆ ℂ)
6 cncfcnvcn.j . . . . . 6 𝐽 = (TopOpen‘ℂfld)
7 cncfcnvcn.k . . . . . 6 𝐾 = (𝐽t 𝑋)
8 eqid 2798 . . . . . 6 (𝐽t 𝑌) = (𝐽t 𝑌)
96, 7, 8cncfcn 23515 . . . . 5 ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋cn𝑌) = (𝐾 Cn (𝐽t 𝑌)))
103, 5, 9syl2anc 587 . . . 4 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝑋cn𝑌) = (𝐾 Cn (𝐽t 𝑌)))
111, 10eleqtrd 2892 . . 3 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝐹 ∈ (𝐾 Cn (𝐽t 𝑌)))
12 ishmeo 22364 . . . 4 (𝐹 ∈ (𝐾Homeo(𝐽t 𝑌)) ↔ (𝐹 ∈ (𝐾 Cn (𝐽t 𝑌)) ∧ 𝐹 ∈ ((𝐽t 𝑌) Cn 𝐾)))
1312baib 539 . . 3 (𝐹 ∈ (𝐾 Cn (𝐽t 𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽t 𝑌)) ↔ 𝐹 ∈ ((𝐽t 𝑌) Cn 𝐾)))
1411, 13syl 17 . 2 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽t 𝑌)) ↔ 𝐹 ∈ ((𝐽t 𝑌) Cn 𝐾)))
156cnfldtop 23389 . . . . . 6 𝐽 ∈ Top
166cnfldtopon 23388 . . . . . . . 8 𝐽 ∈ (TopOn‘ℂ)
1716toponunii 21521 . . . . . . 7 ℂ = 𝐽
1817restuni 21767 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑋 ⊆ ℂ) → 𝑋 = (𝐽t 𝑋))
1915, 3, 18sylancr 590 . . . . 5 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝑋 = (𝐽t 𝑋))
207unieqi 4813 . . . . 5 𝐾 = (𝐽t 𝑋)
2119, 20eqtr4di 2851 . . . 4 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝑋 = 𝐾)
2221f1oeq2d 6586 . . 3 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹:𝑋1-1-onto (𝐽t 𝑌) ↔ 𝐹: 𝐾1-1-onto (𝐽t 𝑌)))
2317restuni 21767 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌 ⊆ ℂ) → 𝑌 = (𝐽t 𝑌))
2415, 5, 23sylancr 590 . . . 4 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝑌 = (𝐽t 𝑌))
2524f1oeq3d 6587 . . 3 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1-onto (𝐽t 𝑌)))
26 simpl 486 . . . 4 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝐾 ∈ Comp)
276cnfldhaus 23390 . . . . 5 𝐽 ∈ Haus
28 cnex 10607 . . . . . . 7 ℂ ∈ V
2928ssex 5189 . . . . . 6 (𝑌 ⊆ ℂ → 𝑌 ∈ V)
305, 29syl 17 . . . . 5 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝑌 ∈ V)
31 resthaus 21973 . . . . 5 ((𝐽 ∈ Haus ∧ 𝑌 ∈ V) → (𝐽t 𝑌) ∈ Haus)
3227, 30, 31sylancr 590 . . . 4 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐽t 𝑌) ∈ Haus)
33 eqid 2798 . . . . 5 𝐾 = 𝐾
34 eqid 2798 . . . . 5 (𝐽t 𝑌) = (𝐽t 𝑌)
3533, 34cmphaushmeo 22405 . . . 4 ((𝐾 ∈ Comp ∧ (𝐽t 𝑌) ∈ Haus ∧ 𝐹 ∈ (𝐾 Cn (𝐽t 𝑌))) → (𝐹 ∈ (𝐾Homeo(𝐽t 𝑌)) ↔ 𝐹: 𝐾1-1-onto (𝐽t 𝑌)))
3626, 32, 11, 35syl3anc 1368 . . 3 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽t 𝑌)) ↔ 𝐹: 𝐾1-1-onto (𝐽t 𝑌)))
3722, 25, 363bitr4d 314 . 2 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝐾Homeo(𝐽t 𝑌))))
386, 8, 7cncfcn 23515 . . . 4 ((𝑌 ⊆ ℂ ∧ 𝑋 ⊆ ℂ) → (𝑌cn𝑋) = ((𝐽t 𝑌) Cn 𝐾))
395, 3, 38syl2anc 587 . . 3 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝑌cn𝑋) = ((𝐽t 𝑌) Cn 𝐾))
4039eleq2d 2875 . 2 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹 ∈ (𝑌cn𝑋) ↔ 𝐹 ∈ ((𝐽t 𝑌) Cn 𝐾)))
4114, 37, 403bitr4d 314 1 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑌cn𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  wss 3881   cuni 4800  ccnv 5518  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  cc 10524  t crest 16686  TopOpenctopn 16687  fldccnfld 20091  Topctop 21498   Cn ccn 21829  Hauscha 21913  Compccmp 21991  Homeochmeo 22358  cnccncf 23481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-rest 16688  df-topn 16689  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-cls 21626  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-hmeo 22360  df-xms 22927  df-ms 22928  df-cncf 23483
This theorem is referenced by:  dvcnvrelem2  24621
  Copyright terms: Public domain W3C validator