Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cncfcnvcn | Structured version Visualization version GIF version |
Description: Rewrite cmphaushmeo 22949 for functions on the complex numbers. (Contributed by Mario Carneiro, 19-Feb-2015.) |
Ref | Expression |
---|---|
cncfcnvcn.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
cncfcnvcn.k | ⊢ 𝐾 = (𝐽 ↾t 𝑋) |
Ref | Expression |
---|---|
cncfcnvcn | ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→𝑌 ↔ ◡𝐹 ∈ (𝑌–cn→𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝐹 ∈ (𝑋–cn→𝑌)) | |
2 | cncfrss 24052 | . . . . . 6 ⊢ (𝐹 ∈ (𝑋–cn→𝑌) → 𝑋 ⊆ ℂ) | |
3 | 2 | adantl 482 | . . . . 5 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑋 ⊆ ℂ) |
4 | cncfrss2 24053 | . . . . . 6 ⊢ (𝐹 ∈ (𝑋–cn→𝑌) → 𝑌 ⊆ ℂ) | |
5 | 4 | adantl 482 | . . . . 5 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑌 ⊆ ℂ) |
6 | cncfcnvcn.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
7 | cncfcnvcn.k | . . . . . 6 ⊢ 𝐾 = (𝐽 ↾t 𝑋) | |
8 | eqid 2740 | . . . . . 6 ⊢ (𝐽 ↾t 𝑌) = (𝐽 ↾t 𝑌) | |
9 | 6, 7, 8 | cncfcn 24071 | . . . . 5 ⊢ ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋–cn→𝑌) = (𝐾 Cn (𝐽 ↾t 𝑌))) |
10 | 3, 5, 9 | syl2anc 584 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝑋–cn→𝑌) = (𝐾 Cn (𝐽 ↾t 𝑌))) |
11 | 1, 10 | eleqtrd 2843 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝐹 ∈ (𝐾 Cn (𝐽 ↾t 𝑌))) |
12 | ishmeo 22908 | . . . 4 ⊢ (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ (𝐹 ∈ (𝐾 Cn (𝐽 ↾t 𝑌)) ∧ ◡𝐹 ∈ ((𝐽 ↾t 𝑌) Cn 𝐾))) | |
13 | 12 | baib 536 | . . 3 ⊢ (𝐹 ∈ (𝐾 Cn (𝐽 ↾t 𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ ◡𝐹 ∈ ((𝐽 ↾t 𝑌) Cn 𝐾))) |
14 | 11, 13 | syl 17 | . 2 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ ◡𝐹 ∈ ((𝐽 ↾t 𝑌) Cn 𝐾))) |
15 | 6 | cnfldtop 23945 | . . . . . 6 ⊢ 𝐽 ∈ Top |
16 | 6 | cnfldtopon 23944 | . . . . . . . 8 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
17 | 16 | toponunii 22063 | . . . . . . 7 ⊢ ℂ = ∪ 𝐽 |
18 | 17 | restuni 22311 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ℂ) → 𝑋 = ∪ (𝐽 ↾t 𝑋)) |
19 | 15, 3, 18 | sylancr 587 | . . . . 5 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑋 = ∪ (𝐽 ↾t 𝑋)) |
20 | 7 | unieqi 4858 | . . . . 5 ⊢ ∪ 𝐾 = ∪ (𝐽 ↾t 𝑋) |
21 | 19, 20 | eqtr4di 2798 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑋 = ∪ 𝐾) |
22 | 21 | f1oeq2d 6710 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→∪ (𝐽 ↾t 𝑌) ↔ 𝐹:∪ 𝐾–1-1-onto→∪ (𝐽 ↾t 𝑌))) |
23 | 17 | restuni 22311 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ ℂ) → 𝑌 = ∪ (𝐽 ↾t 𝑌)) |
24 | 15, 5, 23 | sylancr 587 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑌 = ∪ (𝐽 ↾t 𝑌)) |
25 | 24 | f1oeq3d 6711 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→𝑌 ↔ 𝐹:𝑋–1-1-onto→∪ (𝐽 ↾t 𝑌))) |
26 | simpl 483 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝐾 ∈ Comp) | |
27 | 6 | cnfldhaus 23946 | . . . . 5 ⊢ 𝐽 ∈ Haus |
28 | cnex 10953 | . . . . . . 7 ⊢ ℂ ∈ V | |
29 | 28 | ssex 5249 | . . . . . 6 ⊢ (𝑌 ⊆ ℂ → 𝑌 ∈ V) |
30 | 5, 29 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑌 ∈ V) |
31 | resthaus 22517 | . . . . 5 ⊢ ((𝐽 ∈ Haus ∧ 𝑌 ∈ V) → (𝐽 ↾t 𝑌) ∈ Haus) | |
32 | 27, 30, 31 | sylancr 587 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐽 ↾t 𝑌) ∈ Haus) |
33 | eqid 2740 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
34 | eqid 2740 | . . . . 5 ⊢ ∪ (𝐽 ↾t 𝑌) = ∪ (𝐽 ↾t 𝑌) | |
35 | 33, 34 | cmphaushmeo 22949 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ (𝐽 ↾t 𝑌) ∈ Haus ∧ 𝐹 ∈ (𝐾 Cn (𝐽 ↾t 𝑌))) → (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ 𝐹:∪ 𝐾–1-1-onto→∪ (𝐽 ↾t 𝑌))) |
36 | 26, 32, 11, 35 | syl3anc 1370 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ 𝐹:∪ 𝐾–1-1-onto→∪ (𝐽 ↾t 𝑌))) |
37 | 22, 25, 36 | 3bitr4d 311 | . 2 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→𝑌 ↔ 𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)))) |
38 | 6, 8, 7 | cncfcn 24071 | . . . 4 ⊢ ((𝑌 ⊆ ℂ ∧ 𝑋 ⊆ ℂ) → (𝑌–cn→𝑋) = ((𝐽 ↾t 𝑌) Cn 𝐾)) |
39 | 5, 3, 38 | syl2anc 584 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝑌–cn→𝑋) = ((𝐽 ↾t 𝑌) Cn 𝐾)) |
40 | 39 | eleq2d 2826 | . 2 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (◡𝐹 ∈ (𝑌–cn→𝑋) ↔ ◡𝐹 ∈ ((𝐽 ↾t 𝑌) Cn 𝐾))) |
41 | 14, 37, 40 | 3bitr4d 311 | 1 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→𝑌 ↔ ◡𝐹 ∈ (𝑌–cn→𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ⊆ wss 3892 ∪ cuni 4845 ◡ccnv 5589 –1-1-onto→wf1o 6431 ‘cfv 6432 (class class class)co 7271 ℂcc 10870 ↾t crest 17129 TopOpenctopn 17130 ℂfldccnfld 20595 Topctop 22040 Cn ccn 22373 Hauscha 22457 Compccmp 22535 Homeochmeo 22902 –cn→ccncf 24037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-map 8600 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-fi 9148 df-sup 9179 df-inf 9180 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12437 df-uz 12582 df-q 12688 df-rp 12730 df-xneg 12847 df-xadd 12848 df-xmul 12849 df-icc 13085 df-fz 13239 df-seq 13720 df-exp 13781 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-struct 16846 df-slot 16881 df-ndx 16893 df-base 16911 df-plusg 16973 df-mulr 16974 df-starv 16975 df-tset 16979 df-ple 16980 df-ds 16982 df-unif 16983 df-rest 17131 df-topn 17132 df-topgen 17152 df-psmet 20587 df-xmet 20588 df-met 20589 df-bl 20590 df-mopn 20591 df-cnfld 20596 df-top 22041 df-topon 22058 df-topsp 22080 df-bases 22094 df-cld 22168 df-cls 22170 df-cn 22376 df-cnp 22377 df-haus 22464 df-cmp 22536 df-hmeo 22904 df-xms 23471 df-ms 23472 df-cncf 24039 |
This theorem is referenced by: dvcnvrelem2 25180 |
Copyright terms: Public domain | W3C validator |