![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cncfcnvcn | Structured version Visualization version GIF version |
Description: Rewrite cmphaushmeo 23829 for functions on the complex numbers. (Contributed by Mario Carneiro, 19-Feb-2015.) |
Ref | Expression |
---|---|
cncfcnvcn.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
cncfcnvcn.k | ⊢ 𝐾 = (𝐽 ↾t 𝑋) |
Ref | Expression |
---|---|
cncfcnvcn | ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→𝑌 ↔ ◡𝐹 ∈ (𝑌–cn→𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝐹 ∈ (𝑋–cn→𝑌)) | |
2 | cncfrss 24936 | . . . . . 6 ⊢ (𝐹 ∈ (𝑋–cn→𝑌) → 𝑋 ⊆ ℂ) | |
3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑋 ⊆ ℂ) |
4 | cncfrss2 24937 | . . . . . 6 ⊢ (𝐹 ∈ (𝑋–cn→𝑌) → 𝑌 ⊆ ℂ) | |
5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑌 ⊆ ℂ) |
6 | cncfcnvcn.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
7 | cncfcnvcn.k | . . . . . 6 ⊢ 𝐾 = (𝐽 ↾t 𝑋) | |
8 | eqid 2740 | . . . . . 6 ⊢ (𝐽 ↾t 𝑌) = (𝐽 ↾t 𝑌) | |
9 | 6, 7, 8 | cncfcn 24955 | . . . . 5 ⊢ ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋–cn→𝑌) = (𝐾 Cn (𝐽 ↾t 𝑌))) |
10 | 3, 5, 9 | syl2anc 583 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝑋–cn→𝑌) = (𝐾 Cn (𝐽 ↾t 𝑌))) |
11 | 1, 10 | eleqtrd 2846 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝐹 ∈ (𝐾 Cn (𝐽 ↾t 𝑌))) |
12 | ishmeo 23788 | . . . 4 ⊢ (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ (𝐹 ∈ (𝐾 Cn (𝐽 ↾t 𝑌)) ∧ ◡𝐹 ∈ ((𝐽 ↾t 𝑌) Cn 𝐾))) | |
13 | 12 | baib 535 | . . 3 ⊢ (𝐹 ∈ (𝐾 Cn (𝐽 ↾t 𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ ◡𝐹 ∈ ((𝐽 ↾t 𝑌) Cn 𝐾))) |
14 | 11, 13 | syl 17 | . 2 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ ◡𝐹 ∈ ((𝐽 ↾t 𝑌) Cn 𝐾))) |
15 | 6 | cnfldtop 24825 | . . . . . 6 ⊢ 𝐽 ∈ Top |
16 | 6 | cnfldtopon 24824 | . . . . . . . 8 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
17 | 16 | toponunii 22943 | . . . . . . 7 ⊢ ℂ = ∪ 𝐽 |
18 | 17 | restuni 23191 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ ℂ) → 𝑋 = ∪ (𝐽 ↾t 𝑋)) |
19 | 15, 3, 18 | sylancr 586 | . . . . 5 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑋 = ∪ (𝐽 ↾t 𝑋)) |
20 | 7 | unieqi 4943 | . . . . 5 ⊢ ∪ 𝐾 = ∪ (𝐽 ↾t 𝑋) |
21 | 19, 20 | eqtr4di 2798 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑋 = ∪ 𝐾) |
22 | 21 | f1oeq2d 6858 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→∪ (𝐽 ↾t 𝑌) ↔ 𝐹:∪ 𝐾–1-1-onto→∪ (𝐽 ↾t 𝑌))) |
23 | 17 | restuni 23191 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ ℂ) → 𝑌 = ∪ (𝐽 ↾t 𝑌)) |
24 | 15, 5, 23 | sylancr 586 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑌 = ∪ (𝐽 ↾t 𝑌)) |
25 | 24 | f1oeq3d 6859 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→𝑌 ↔ 𝐹:𝑋–1-1-onto→∪ (𝐽 ↾t 𝑌))) |
26 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝐾 ∈ Comp) | |
27 | 6 | cnfldhaus 24826 | . . . . 5 ⊢ 𝐽 ∈ Haus |
28 | cnex 11265 | . . . . . . 7 ⊢ ℂ ∈ V | |
29 | 28 | ssex 5339 | . . . . . 6 ⊢ (𝑌 ⊆ ℂ → 𝑌 ∈ V) |
30 | 5, 29 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → 𝑌 ∈ V) |
31 | resthaus 23397 | . . . . 5 ⊢ ((𝐽 ∈ Haus ∧ 𝑌 ∈ V) → (𝐽 ↾t 𝑌) ∈ Haus) | |
32 | 27, 30, 31 | sylancr 586 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐽 ↾t 𝑌) ∈ Haus) |
33 | eqid 2740 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
34 | eqid 2740 | . . . . 5 ⊢ ∪ (𝐽 ↾t 𝑌) = ∪ (𝐽 ↾t 𝑌) | |
35 | 33, 34 | cmphaushmeo 23829 | . . . 4 ⊢ ((𝐾 ∈ Comp ∧ (𝐽 ↾t 𝑌) ∈ Haus ∧ 𝐹 ∈ (𝐾 Cn (𝐽 ↾t 𝑌))) → (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ 𝐹:∪ 𝐾–1-1-onto→∪ (𝐽 ↾t 𝑌))) |
36 | 26, 32, 11, 35 | syl3anc 1371 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)) ↔ 𝐹:∪ 𝐾–1-1-onto→∪ (𝐽 ↾t 𝑌))) |
37 | 22, 25, 36 | 3bitr4d 311 | . 2 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→𝑌 ↔ 𝐹 ∈ (𝐾Homeo(𝐽 ↾t 𝑌)))) |
38 | 6, 8, 7 | cncfcn 24955 | . . . 4 ⊢ ((𝑌 ⊆ ℂ ∧ 𝑋 ⊆ ℂ) → (𝑌–cn→𝑋) = ((𝐽 ↾t 𝑌) Cn 𝐾)) |
39 | 5, 3, 38 | syl2anc 583 | . . 3 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝑌–cn→𝑋) = ((𝐽 ↾t 𝑌) Cn 𝐾)) |
40 | 39 | eleq2d 2830 | . 2 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (◡𝐹 ∈ (𝑌–cn→𝑋) ↔ ◡𝐹 ∈ ((𝐽 ↾t 𝑌) Cn 𝐾))) |
41 | 14, 37, 40 | 3bitr4d 311 | 1 ⊢ ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋–cn→𝑌)) → (𝐹:𝑋–1-1-onto→𝑌 ↔ ◡𝐹 ∈ (𝑌–cn→𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ∪ cuni 4931 ◡ccnv 5699 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ↾t crest 17480 TopOpenctopn 17481 ℂfldccnfld 21387 Topctop 22920 Cn ccn 23253 Hauscha 23337 Compccmp 23415 Homeochmeo 23782 –cn→ccncf 24921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fi 9480 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-icc 13414 df-fz 13568 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-rest 17482 df-topn 17483 df-topgen 17503 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-cls 23050 df-cn 23256 df-cnp 23257 df-haus 23344 df-cmp 23416 df-hmeo 23784 df-xms 24351 df-ms 24352 df-cncf 24923 |
This theorem is referenced by: dvcnvrelem2 26077 |
Copyright terms: Public domain | W3C validator |