![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climcncf | Structured version Visualization version GIF version |
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 7-Apr-2015.) |
Ref | Expression |
---|---|
climcncf.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climcncf.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climcncf.4 | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) |
climcncf.5 | ⊢ (𝜑 → 𝐺:𝑍⟶𝐴) |
climcncf.6 | ⊢ (𝜑 → 𝐺 ⇝ 𝐷) |
climcncf.7 | ⊢ (𝜑 → 𝐷 ∈ 𝐴) |
Ref | Expression |
---|---|
climcncf | ⊢ (𝜑 → (𝐹 ∘ 𝐺) ⇝ (𝐹‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climcncf.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climcncf.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climcncf.7 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝐴) | |
4 | climcncf.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) | |
5 | cncff 24408 | . . . . 5 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
7 | 6 | ffvelcdmda 7086 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) |
8 | cncfrss2 24407 | . . . . 5 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) | |
9 | 4, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℂ) |
10 | 9 | sselda 3982 | . . 3 ⊢ ((𝜑 ∧ (𝐹‘𝑧) ∈ 𝐵) → (𝐹‘𝑧) ∈ ℂ) |
11 | 7, 10 | syldan 591 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ ℂ) |
12 | climcncf.6 | . 2 ⊢ (𝜑 → 𝐺 ⇝ 𝐷) | |
13 | climcncf.5 | . . . 4 ⊢ (𝜑 → 𝐺:𝑍⟶𝐴) | |
14 | 1 | fvexi 6905 | . . . 4 ⊢ 𝑍 ∈ V |
15 | fex 7227 | . . . 4 ⊢ ((𝐺:𝑍⟶𝐴 ∧ 𝑍 ∈ V) → 𝐺 ∈ V) | |
16 | 13, 14, 15 | sylancl 586 | . . 3 ⊢ (𝜑 → 𝐺 ∈ V) |
17 | coexg 7919 | . . 3 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝐺 ∈ V) → (𝐹 ∘ 𝐺) ∈ V) | |
18 | 4, 16, 17 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ V) |
19 | cncfi 24409 | . . . . 5 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝐷 ∈ 𝐴 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((abs‘(𝑧 − 𝐷)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐷))) < 𝑥)) | |
20 | 19 | 3expia 1121 | . . . 4 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝐷 ∈ 𝐴) → (𝑥 ∈ ℝ+ → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((abs‘(𝑧 − 𝐷)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐷))) < 𝑥))) |
21 | 4, 3, 20 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ+ → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((abs‘(𝑧 − 𝐷)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐷))) < 𝑥))) |
22 | 21 | imp 407 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((abs‘(𝑧 − 𝐷)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐷))) < 𝑥)) |
23 | 13 | ffvelcdmda 7086 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ 𝐴) |
24 | fvco3 6990 | . . 3 ⊢ ((𝐺:𝑍⟶𝐴 ∧ 𝑘 ∈ 𝑍) → ((𝐹 ∘ 𝐺)‘𝑘) = (𝐹‘(𝐺‘𝑘))) | |
25 | 13, 24 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹 ∘ 𝐺)‘𝑘) = (𝐹‘(𝐺‘𝑘))) |
26 | 1, 2, 3, 11, 12, 18, 22, 23, 25 | climcn1 15535 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺) ⇝ (𝐹‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 Vcvv 3474 ⊆ wss 3948 class class class wbr 5148 ∘ ccom 5680 ⟶wf 6539 ‘cfv 6543 (class class class)co 7408 ℂcc 11107 < clt 11247 − cmin 11443 ℤcz 12557 ℤ≥cuz 12821 ℝ+crp 12973 abscabs 15180 ⇝ cli 15427 –cn→ccncf 24391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-2 12274 df-z 12558 df-uz 12822 df-cj 15045 df-re 15046 df-im 15047 df-abs 15182 df-clim 15431 df-cncf 24393 |
This theorem is referenced by: leibpi 26444 lgamcvg2 26556 gamcvg 26557 iprodefisum 34706 climexp 44311 fprodsubrecnncnvlem 44613 fprodaddrecnncnvlem 44615 stirlinglem14 44793 |
Copyright terms: Public domain | W3C validator |