MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcncf Structured version   Visualization version   GIF version

Theorem climcncf 23491
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
climcncf.1 𝑍 = (ℤ𝑀)
climcncf.2 (𝜑𝑀 ∈ ℤ)
climcncf.4 (𝜑𝐹 ∈ (𝐴cn𝐵))
climcncf.5 (𝜑𝐺:𝑍𝐴)
climcncf.6 (𝜑𝐺𝐷)
climcncf.7 (𝜑𝐷𝐴)
Assertion
Ref Expression
climcncf (𝜑 → (𝐹𝐺) ⇝ (𝐹𝐷))

Proof of Theorem climcncf
Dummy variables 𝑦 𝑧 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climcncf.1 . 2 𝑍 = (ℤ𝑀)
2 climcncf.2 . 2 (𝜑𝑀 ∈ ℤ)
3 climcncf.7 . 2 (𝜑𝐷𝐴)
4 climcncf.4 . . . . 5 (𝜑𝐹 ∈ (𝐴cn𝐵))
5 cncff 23484 . . . . 5 (𝐹 ∈ (𝐴cn𝐵) → 𝐹:𝐴𝐵)
64, 5syl 17 . . . 4 (𝜑𝐹:𝐴𝐵)
76ffvelrnda 6837 . . 3 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ 𝐵)
8 cncfrss2 23483 . . . . 5 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ⊆ ℂ)
94, 8syl 17 . . . 4 (𝜑𝐵 ⊆ ℂ)
109sselda 3955 . . 3 ((𝜑 ∧ (𝐹𝑧) ∈ 𝐵) → (𝐹𝑧) ∈ ℂ)
117, 10syldan 593 . 2 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
12 climcncf.6 . 2 (𝜑𝐺𝐷)
13 climcncf.5 . . . 4 (𝜑𝐺:𝑍𝐴)
141fvexi 6670 . . . 4 𝑍 ∈ V
15 fex 6975 . . . 4 ((𝐺:𝑍𝐴𝑍 ∈ V) → 𝐺 ∈ V)
1613, 14, 15sylancl 588 . . 3 (𝜑𝐺 ∈ V)
17 coexg 7620 . . 3 ((𝐹 ∈ (𝐴cn𝐵) ∧ 𝐺 ∈ V) → (𝐹𝐺) ∈ V)
184, 16, 17syl2anc 586 . 2 (𝜑 → (𝐹𝐺) ∈ V)
19 cncfi 23485 . . . . 5 ((𝐹 ∈ (𝐴cn𝐵) ∧ 𝐷𝐴𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((abs‘(𝑧𝐷)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐷))) < 𝑥))
20193expia 1117 . . . 4 ((𝐹 ∈ (𝐴cn𝐵) ∧ 𝐷𝐴) → (𝑥 ∈ ℝ+ → ∃𝑦 ∈ ℝ+𝑧𝐴 ((abs‘(𝑧𝐷)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐷))) < 𝑥)))
214, 3, 20syl2anc 586 . . 3 (𝜑 → (𝑥 ∈ ℝ+ → ∃𝑦 ∈ ℝ+𝑧𝐴 ((abs‘(𝑧𝐷)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐷))) < 𝑥)))
2221imp 409 . 2 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((abs‘(𝑧𝐷)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐷))) < 𝑥))
2313ffvelrnda 6837 . 2 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐴)
24 fvco3 6746 . . 3 ((𝐺:𝑍𝐴𝑘𝑍) → ((𝐹𝐺)‘𝑘) = (𝐹‘(𝐺𝑘)))
2513, 24sylan 582 . 2 ((𝜑𝑘𝑍) → ((𝐹𝐺)‘𝑘) = (𝐹‘(𝐺𝑘)))
261, 2, 3, 11, 12, 18, 22, 23, 25climcn1 14933 1 (𝜑 → (𝐹𝐺) ⇝ (𝐹𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wral 3138  wrex 3139  Vcvv 3486  wss 3924   class class class wbr 5052  ccom 5545  wf 6337  cfv 6341  (class class class)co 7142  cc 10521   < clt 10661  cmin 10856  cz 11968  cuz 12230  +crp 12376  abscabs 14578  cli 14826  cnccncf 23467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5446  df-po 5460  df-so 5461  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-div 11284  df-2 11687  df-z 11969  df-uz 12231  df-cj 14443  df-re 14444  df-im 14445  df-abs 14580  df-clim 14830  df-cncf 23469
This theorem is referenced by:  leibpi  25506  lgamcvg2  25618  gamcvg  25619  iprodefisum  32980  climexp  41976  fprodsubrecnncnvlem  42281  fprodaddrecnncnvlem  42283  stirlinglem14  42462
  Copyright terms: Public domain W3C validator