| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climcncf | Structured version Visualization version GIF version | ||
| Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| Ref | Expression |
|---|---|
| climcncf.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climcncf.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climcncf.4 | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) |
| climcncf.5 | ⊢ (𝜑 → 𝐺:𝑍⟶𝐴) |
| climcncf.6 | ⊢ (𝜑 → 𝐺 ⇝ 𝐷) |
| climcncf.7 | ⊢ (𝜑 → 𝐷 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| climcncf | ⊢ (𝜑 → (𝐹 ∘ 𝐺) ⇝ (𝐹‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcncf.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climcncf.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climcncf.7 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝐴) | |
| 4 | climcncf.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) | |
| 5 | cncff 24808 | . . . . 5 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 7 | 6 | ffvelcdmda 7012 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) |
| 8 | cncfrss2 24807 | . . . . 5 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) | |
| 9 | 4, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℂ) |
| 10 | 9 | sselda 3929 | . . 3 ⊢ ((𝜑 ∧ (𝐹‘𝑧) ∈ 𝐵) → (𝐹‘𝑧) ∈ ℂ) |
| 11 | 7, 10 | syldan 591 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ ℂ) |
| 12 | climcncf.6 | . 2 ⊢ (𝜑 → 𝐺 ⇝ 𝐷) | |
| 13 | climcncf.5 | . . . 4 ⊢ (𝜑 → 𝐺:𝑍⟶𝐴) | |
| 14 | 1 | fvexi 6831 | . . . 4 ⊢ 𝑍 ∈ V |
| 15 | fex 7155 | . . . 4 ⊢ ((𝐺:𝑍⟶𝐴 ∧ 𝑍 ∈ V) → 𝐺 ∈ V) | |
| 16 | 13, 14, 15 | sylancl 586 | . . 3 ⊢ (𝜑 → 𝐺 ∈ V) |
| 17 | coexg 7854 | . . 3 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝐺 ∈ V) → (𝐹 ∘ 𝐺) ∈ V) | |
| 18 | 4, 16, 17 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ V) |
| 19 | cncfi 24809 | . . . . 5 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝐷 ∈ 𝐴 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((abs‘(𝑧 − 𝐷)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐷))) < 𝑥)) | |
| 20 | 19 | 3expia 1121 | . . . 4 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝐷 ∈ 𝐴) → (𝑥 ∈ ℝ+ → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((abs‘(𝑧 − 𝐷)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐷))) < 𝑥))) |
| 21 | 4, 3, 20 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ+ → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((abs‘(𝑧 − 𝐷)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐷))) < 𝑥))) |
| 22 | 21 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((abs‘(𝑧 − 𝐷)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐷))) < 𝑥)) |
| 23 | 13 | ffvelcdmda 7012 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ 𝐴) |
| 24 | fvco3 6916 | . . 3 ⊢ ((𝐺:𝑍⟶𝐴 ∧ 𝑘 ∈ 𝑍) → ((𝐹 ∘ 𝐺)‘𝑘) = (𝐹‘(𝐺‘𝑘))) | |
| 25 | 13, 24 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹 ∘ 𝐺)‘𝑘) = (𝐹‘(𝐺‘𝑘))) |
| 26 | 1, 2, 3, 11, 12, 18, 22, 23, 25 | climcn1 15494 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺) ⇝ (𝐹‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ⊆ wss 3897 class class class wbr 5086 ∘ ccom 5615 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 < clt 11141 − cmin 11339 ℤcz 12463 ℤ≥cuz 12727 ℝ+crp 12885 abscabs 15136 ⇝ cli 15386 –cn→ccncf 24791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-z 12464 df-uz 12728 df-cj 15001 df-re 15002 df-im 15003 df-abs 15138 df-clim 15390 df-cncf 24793 |
| This theorem is referenced by: leibpi 26874 lgamcvg2 26987 gamcvg 26988 iprodefisum 35777 climexp 45645 fprodsubrecnncnvlem 45945 fprodaddrecnncnvlem 45947 stirlinglem14 46125 |
| Copyright terms: Public domain | W3C validator |