![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cncfmptssg | Structured version Visualization version GIF version |
Description: A continuous complex function restricted to a subset is continuous, using maps-to notation. This theorem generalizes cncfmptss 44293 because it allows to establish a subset for the codomain also. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
cncfmptssg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐸) |
cncfmptssg.3 | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) |
cncfmptssg.4 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
cncfmptssg.5 | ⊢ (𝜑 → 𝐷 ⊆ 𝐵) |
cncfmptssg.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐸 ∈ 𝐷) |
Ref | Expression |
---|---|
cncfmptssg | ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐸) ∈ (𝐶–cn→𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfmptssg.6 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐸 ∈ 𝐷) | |
2 | 1 | fmpttd 7114 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐸):𝐶⟶𝐷) |
3 | cncfmptssg.5 | . . . 4 ⊢ (𝜑 → 𝐷 ⊆ 𝐵) | |
4 | cncfmptssg.3 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) | |
5 | cncfrss2 24407 | . . . . 5 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℂ) |
7 | 3, 6 | sstrd 3992 | . . 3 ⊢ (𝜑 → 𝐷 ⊆ ℂ) |
8 | cncfmptssg.4 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
9 | 8 | sselda 3982 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐴) |
10 | cncfmptssg.2 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐸) | |
11 | 10 | fvmpt2 7009 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐸 ∈ 𝐷) → (𝐹‘𝑥) = 𝐸) |
12 | 9, 1, 11 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐹‘𝑥) = 𝐸) |
13 | 12 | mpteq2dva 5248 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐶 ↦ 𝐸)) |
14 | nfmpt1 5256 | . . . . . 6 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐸) | |
15 | 10, 14 | nfcxfr 2901 | . . . . 5 ⊢ Ⅎ𝑥𝐹 |
16 | 15, 4, 8 | cncfmptss 44293 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈ (𝐶–cn→𝐵)) |
17 | 13, 16 | eqeltrrd 2834 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐸) ∈ (𝐶–cn→𝐵)) |
18 | cncfcdm 24413 | . . 3 ⊢ ((𝐷 ⊆ ℂ ∧ (𝑥 ∈ 𝐶 ↦ 𝐸) ∈ (𝐶–cn→𝐵)) → ((𝑥 ∈ 𝐶 ↦ 𝐸) ∈ (𝐶–cn→𝐷) ↔ (𝑥 ∈ 𝐶 ↦ 𝐸):𝐶⟶𝐷)) | |
19 | 7, 17, 18 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐶 ↦ 𝐸) ∈ (𝐶–cn→𝐷) ↔ (𝑥 ∈ 𝐶 ↦ 𝐸):𝐶⟶𝐷)) |
20 | 2, 19 | mpbird 256 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐸) ∈ (𝐶–cn→𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⊆ wss 3948 ↦ cmpt 5231 ⟶wf 6539 ‘cfv 6543 (class class class)co 7408 ℂcc 11107 –cn→ccncf 24391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-2 12274 df-cj 15045 df-re 15046 df-im 15047 df-abs 15182 df-cncf 24393 |
This theorem is referenced by: negcncfg 44587 itgsinexplem1 44660 itgiccshift 44686 itgperiod 44687 itgsbtaddcnst 44688 dirkeritg 44808 dirkercncflem2 44810 dirkercncflem4 44812 fourierdlem18 44831 fourierdlem23 44836 fourierdlem39 44852 fourierdlem40 44853 fourierdlem62 44874 fourierdlem73 44885 fourierdlem78 44890 fourierdlem83 44895 fourierdlem84 44896 fourierdlem93 44905 fourierdlem95 44907 fourierdlem101 44913 fourierdlem111 44923 etransclem46 44986 |
Copyright terms: Public domain | W3C validator |