Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfmptssg Structured version   Visualization version   GIF version

Theorem cncfmptssg 43366
Description: A continuous complex function restricted to a subset is continuous, using maps-to notation. This theorem generalizes cncfmptss 43082 because it allows to establish a subset for the codomain also. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfmptssg.2 𝐹 = (𝑥𝐴𝐸)
cncfmptssg.3 (𝜑𝐹 ∈ (𝐴cn𝐵))
cncfmptssg.4 (𝜑𝐶𝐴)
cncfmptssg.5 (𝜑𝐷𝐵)
cncfmptssg.6 ((𝜑𝑥𝐶) → 𝐸𝐷)
Assertion
Ref Expression
cncfmptssg (𝜑 → (𝑥𝐶𝐸) ∈ (𝐶cn𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐸(𝑥)   𝐹(𝑥)

Proof of Theorem cncfmptssg
StepHypRef Expression
1 cncfmptssg.6 . . 3 ((𝜑𝑥𝐶) → 𝐸𝐷)
21fmpttd 6983 . 2 (𝜑 → (𝑥𝐶𝐸):𝐶𝐷)
3 cncfmptssg.5 . . . 4 (𝜑𝐷𝐵)
4 cncfmptssg.3 . . . . 5 (𝜑𝐹 ∈ (𝐴cn𝐵))
5 cncfrss2 24036 . . . . 5 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ⊆ ℂ)
64, 5syl 17 . . . 4 (𝜑𝐵 ⊆ ℂ)
73, 6sstrd 3935 . . 3 (𝜑𝐷 ⊆ ℂ)
8 cncfmptssg.4 . . . . . . 7 (𝜑𝐶𝐴)
98sselda 3925 . . . . . 6 ((𝜑𝑥𝐶) → 𝑥𝐴)
10 cncfmptssg.2 . . . . . . 7 𝐹 = (𝑥𝐴𝐸)
1110fvmpt2 6880 . . . . . 6 ((𝑥𝐴𝐸𝐷) → (𝐹𝑥) = 𝐸)
129, 1, 11syl2anc 583 . . . . 5 ((𝜑𝑥𝐶) → (𝐹𝑥) = 𝐸)
1312mpteq2dva 5178 . . . 4 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶𝐸))
14 nfmpt1 5186 . . . . . 6 𝑥(𝑥𝐴𝐸)
1510, 14nfcxfr 2906 . . . . 5 𝑥𝐹
1615, 4, 8cncfmptss 43082 . . . 4 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ (𝐶cn𝐵))
1713, 16eqeltrrd 2841 . . 3 (𝜑 → (𝑥𝐶𝐸) ∈ (𝐶cn𝐵))
18 cncffvrn 24042 . . 3 ((𝐷 ⊆ ℂ ∧ (𝑥𝐶𝐸) ∈ (𝐶cn𝐵)) → ((𝑥𝐶𝐸) ∈ (𝐶cn𝐷) ↔ (𝑥𝐶𝐸):𝐶𝐷))
197, 17, 18syl2anc 583 . 2 (𝜑 → ((𝑥𝐶𝐸) ∈ (𝐶cn𝐷) ↔ (𝑥𝐶𝐸):𝐶𝐷))
202, 19mpbird 256 1 (𝜑 → (𝑥𝐶𝐸) ∈ (𝐶cn𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wss 3891  cmpt 5161  wf 6426  cfv 6430  (class class class)co 7268  cc 10853  cnccncf 24020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-2 12019  df-cj 14791  df-re 14792  df-im 14793  df-abs 14928  df-cncf 24022
This theorem is referenced by:  negcncfg  43376  itgsinexplem1  43449  itgiccshift  43475  itgperiod  43476  itgsbtaddcnst  43477  dirkeritg  43597  dirkercncflem2  43599  dirkercncflem4  43601  fourierdlem18  43620  fourierdlem23  43625  fourierdlem39  43641  fourierdlem40  43642  fourierdlem62  43663  fourierdlem73  43674  fourierdlem78  43679  fourierdlem83  43684  fourierdlem84  43685  fourierdlem93  43694  fourierdlem95  43696  fourierdlem101  43702  fourierdlem111  43712  etransclem46  43775
  Copyright terms: Public domain W3C validator