![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cncfmptssg | Structured version Visualization version GIF version |
Description: A continuous complex function restricted to a subset is continuous, using maps-to notation. This theorem generalizes cncfmptss 45115 because it allows to establish a subset for the codomain also. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
cncfmptssg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐸) |
cncfmptssg.3 | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) |
cncfmptssg.4 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
cncfmptssg.5 | ⊢ (𝜑 → 𝐷 ⊆ 𝐵) |
cncfmptssg.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐸 ∈ 𝐷) |
Ref | Expression |
---|---|
cncfmptssg | ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐸) ∈ (𝐶–cn→𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfmptssg.6 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐸 ∈ 𝐷) | |
2 | 1 | fmpttd 7124 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐸):𝐶⟶𝐷) |
3 | cncfmptssg.5 | . . . 4 ⊢ (𝜑 → 𝐷 ⊆ 𝐵) | |
4 | cncfmptssg.3 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) | |
5 | cncfrss2 24861 | . . . . 5 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℂ) |
7 | 3, 6 | sstrd 3987 | . . 3 ⊢ (𝜑 → 𝐷 ⊆ ℂ) |
8 | cncfmptssg.4 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
9 | 8 | sselda 3976 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐴) |
10 | cncfmptssg.2 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐸) | |
11 | 10 | fvmpt2 7015 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐸 ∈ 𝐷) → (𝐹‘𝑥) = 𝐸) |
12 | 9, 1, 11 | syl2anc 582 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐹‘𝑥) = 𝐸) |
13 | 12 | mpteq2dva 5249 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐶 ↦ 𝐸)) |
14 | nfmpt1 5257 | . . . . . 6 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐸) | |
15 | 10, 14 | nfcxfr 2889 | . . . . 5 ⊢ Ⅎ𝑥𝐹 |
16 | 15, 4, 8 | cncfmptss 45115 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈ (𝐶–cn→𝐵)) |
17 | 13, 16 | eqeltrrd 2826 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐸) ∈ (𝐶–cn→𝐵)) |
18 | cncfcdm 24867 | . . 3 ⊢ ((𝐷 ⊆ ℂ ∧ (𝑥 ∈ 𝐶 ↦ 𝐸) ∈ (𝐶–cn→𝐵)) → ((𝑥 ∈ 𝐶 ↦ 𝐸) ∈ (𝐶–cn→𝐷) ↔ (𝑥 ∈ 𝐶 ↦ 𝐸):𝐶⟶𝐷)) | |
19 | 7, 17, 18 | syl2anc 582 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐶 ↦ 𝐸) ∈ (𝐶–cn→𝐷) ↔ (𝑥 ∈ 𝐶 ↦ 𝐸):𝐶⟶𝐷)) |
20 | 2, 19 | mpbird 256 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐸) ∈ (𝐶–cn→𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3944 ↦ cmpt 5232 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 ℂcc 11143 –cn→ccncf 24845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-div 11909 df-2 12313 df-cj 15087 df-re 15088 df-im 15089 df-abs 15224 df-cncf 24847 |
This theorem is referenced by: negcncfg 45409 itgsinexplem1 45482 itgiccshift 45508 itgperiod 45509 itgsbtaddcnst 45510 dirkeritg 45630 dirkercncflem2 45632 dirkercncflem4 45634 fourierdlem18 45653 fourierdlem23 45658 fourierdlem39 45674 fourierdlem40 45675 fourierdlem62 45696 fourierdlem73 45707 fourierdlem78 45712 fourierdlem83 45717 fourierdlem84 45718 fourierdlem93 45727 fourierdlem95 45729 fourierdlem101 45735 fourierdlem111 45745 etransclem46 45808 |
Copyright terms: Public domain | W3C validator |