Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnelsubclem Structured version   Visualization version   GIF version

Theorem cnelsubclem 49714
Description: Lemma for cnelsubc 49715. (Contributed by Zhi Wang, 6-Nov-2025.)
Hypotheses
Ref Expression
cnelsubclem.1 𝐽 ∈ V
cnelsubclem.2 𝑆 ∈ V
cnelsubclem.3 (𝐶 ∈ Cat ∧ 𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat))
Assertion
Ref Expression
cnelsubclem 𝑐 ∈ Cat ∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝑐) ∧ ¬ ∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝑐cat 𝑗) ∈ Cat))
Distinct variable groups:   𝐶,𝑐,𝑗,𝑠,𝑥   𝑗,𝐽,𝑠,𝑥   𝑆,𝑠,𝑥
Allowed substitution hints:   𝑆(𝑗,𝑐)   𝐽(𝑐)

Proof of Theorem cnelsubclem
StepHypRef Expression
1 cnelsubclem.3 . . 3 (𝐶 ∈ Cat ∧ 𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat))
21simp1i 1139 . 2 𝐶 ∈ Cat
31simp2i 1140 . . 3 𝐽 Fn (𝑆 × 𝑆)
41simp3i 1141 . . 3 (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat)
5 cnelsubclem.2 . . . . 5 𝑆 ∈ V
6 id 22 . . . . . . . 8 (𝑠 = 𝑆𝑠 = 𝑆)
76sqxpeqd 5646 . . . . . . 7 (𝑠 = 𝑆 → (𝑠 × 𝑠) = (𝑆 × 𝑆))
87fneq2d 6575 . . . . . 6 (𝑠 = 𝑆 → (𝐽 Fn (𝑠 × 𝑠) ↔ 𝐽 Fn (𝑆 × 𝑆)))
9 raleq 3289 . . . . . . . 8 (𝑠 = 𝑆 → (∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥)))
109notbid 318 . . . . . . 7 (𝑠 = 𝑆 → (¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥)))
11103anbi2d 1443 . . . . . 6 (𝑠 = 𝑆 → ((𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat) ↔ (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat)))
128, 11anbi12d 632 . . . . 5 (𝑠 = 𝑆 → ((𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat)) ↔ (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat))))
135, 12spcev 3556 . . . 4 ((𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat)) → ∃𝑠(𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat)))
14 cnelsubclem.1 . . . . 5 𝐽 ∈ V
15 fneq1 6572 . . . . . . 7 (𝑗 = 𝐽 → (𝑗 Fn (𝑠 × 𝑠) ↔ 𝐽 Fn (𝑠 × 𝑠)))
16 breq1 5092 . . . . . . . 8 (𝑗 = 𝐽 → (𝑗cat (Homf𝐶) ↔ 𝐽cat (Homf𝐶)))
17 oveq 7352 . . . . . . . . . . 11 (𝑗 = 𝐽 → (𝑥𝑗𝑥) = (𝑥𝐽𝑥))
1817eleq2d 2817 . . . . . . . . . 10 (𝑗 = 𝐽 → (((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥)))
1918ralbidv 3155 . . . . . . . . 9 (𝑗 = 𝐽 → (∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥)))
2019notbid 318 . . . . . . . 8 (𝑗 = 𝐽 → (¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥)))
21 oveq2 7354 . . . . . . . . 9 (𝑗 = 𝐽 → (𝐶cat 𝑗) = (𝐶cat 𝐽))
2221eleq1d 2816 . . . . . . . 8 (𝑗 = 𝐽 → ((𝐶cat 𝑗) ∈ Cat ↔ (𝐶cat 𝐽) ∈ Cat))
2316, 20, 223anbi123d 1438 . . . . . . 7 (𝑗 = 𝐽 → ((𝑗cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶cat 𝑗) ∈ Cat) ↔ (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat)))
2415, 23anbi12d 632 . . . . . 6 (𝑗 = 𝐽 → ((𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶cat 𝑗) ∈ Cat)) ↔ (𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat))))
2524exbidv 1922 . . . . 5 (𝑗 = 𝐽 → (∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶cat 𝑗) ∈ Cat)) ↔ ∃𝑠(𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat))))
2614, 25spcev 3556 . . . 4 (∃𝑠(𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat)) → ∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶cat 𝑗) ∈ Cat)))
2713, 26syl 17 . . 3 ((𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat)) → ∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶cat 𝑗) ∈ Cat)))
283, 4, 27mp2an 692 . 2 𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶cat 𝑗) ∈ Cat))
29 fveq2 6822 . . . . . . 7 (𝑐 = 𝐶 → (Homf𝑐) = (Homf𝐶))
3029breq2d 5101 . . . . . 6 (𝑐 = 𝐶 → (𝑗cat (Homf𝑐) ↔ 𝑗cat (Homf𝐶)))
31 fveq2 6822 . . . . . . . . . 10 (𝑐 = 𝐶 → (Id‘𝑐) = (Id‘𝐶))
3231fveq1d 6824 . . . . . . . . 9 (𝑐 = 𝐶 → ((Id‘𝑐)‘𝑥) = ((Id‘𝐶)‘𝑥))
3332eleq1d 2816 . . . . . . . 8 (𝑐 = 𝐶 → (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥)))
3433ralbidv 3155 . . . . . . 7 (𝑐 = 𝐶 → (∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥)))
3534notbid 318 . . . . . 6 (𝑐 = 𝐶 → (¬ ∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥)))
36 oveq1 7353 . . . . . . 7 (𝑐 = 𝐶 → (𝑐cat 𝑗) = (𝐶cat 𝑗))
3736eleq1d 2816 . . . . . 6 (𝑐 = 𝐶 → ((𝑐cat 𝑗) ∈ Cat ↔ (𝐶cat 𝑗) ∈ Cat))
3830, 35, 373anbi123d 1438 . . . . 5 (𝑐 = 𝐶 → ((𝑗cat (Homf𝑐) ∧ ¬ ∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝑐cat 𝑗) ∈ Cat) ↔ (𝑗cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶cat 𝑗) ∈ Cat)))
3938anbi2d 630 . . . 4 (𝑐 = 𝐶 → ((𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝑐) ∧ ¬ ∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝑐cat 𝑗) ∈ Cat)) ↔ (𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶cat 𝑗) ∈ Cat))))
40392exbidv 1925 . . 3 (𝑐 = 𝐶 → (∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝑐) ∧ ¬ ∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝑐cat 𝑗) ∈ Cat)) ↔ ∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶cat 𝑗) ∈ Cat))))
4140rspcev 3572 . 2 ((𝐶 ∈ Cat ∧ ∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶cat 𝑗) ∈ Cat))) → ∃𝑐 ∈ Cat ∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝑐) ∧ ¬ ∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝑐cat 𝑗) ∈ Cat)))
422, 28, 41mp2an 692 1 𝑐 ∈ Cat ∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝑐) ∧ ¬ ∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝑐cat 𝑗) ∈ Cat))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  Vcvv 3436   class class class wbr 5089   × cxp 5612   Fn wfn 6476  cfv 6481  (class class class)co 7346  Catccat 17570  Idccid 17571  Homf chomf 17572  cat cssc 17714  cat cresc 17715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-ov 7349
This theorem is referenced by:  cnelsubc  49715
  Copyright terms: Public domain W3C validator