Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnelsubclem Structured version   Visualization version   GIF version

Theorem cnelsubclem 49585
Description: Lemma for cnelsubc 49586. (Contributed by Zhi Wang, 6-Nov-2025.)
Hypotheses
Ref Expression
cnelsubclem.1 𝐽 ∈ V
cnelsubclem.2 𝑆 ∈ V
cnelsubclem.3 (𝐶 ∈ Cat ∧ 𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat))
Assertion
Ref Expression
cnelsubclem 𝑐 ∈ Cat ∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝑐) ∧ ¬ ∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝑐cat 𝑗) ∈ Cat))
Distinct variable groups:   𝐶,𝑐,𝑗,𝑠,𝑥   𝑗,𝐽,𝑠,𝑥   𝑆,𝑠,𝑥
Allowed substitution hints:   𝑆(𝑗,𝑐)   𝐽(𝑐)

Proof of Theorem cnelsubclem
StepHypRef Expression
1 cnelsubclem.3 . . 3 (𝐶 ∈ Cat ∧ 𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat))
21simp1i 1139 . 2 𝐶 ∈ Cat
31simp2i 1140 . . 3 𝐽 Fn (𝑆 × 𝑆)
41simp3i 1141 . . 3 (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat)
5 cnelsubclem.2 . . . . 5 𝑆 ∈ V
6 id 22 . . . . . . . 8 (𝑠 = 𝑆𝑠 = 𝑆)
76sqxpeqd 5663 . . . . . . 7 (𝑠 = 𝑆 → (𝑠 × 𝑠) = (𝑆 × 𝑆))
87fneq2d 6594 . . . . . 6 (𝑠 = 𝑆 → (𝐽 Fn (𝑠 × 𝑠) ↔ 𝐽 Fn (𝑆 × 𝑆)))
9 raleq 3293 . . . . . . . 8 (𝑠 = 𝑆 → (∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥)))
109notbid 318 . . . . . . 7 (𝑠 = 𝑆 → (¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥)))
11103anbi2d 1443 . . . . . 6 (𝑠 = 𝑆 → ((𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat) ↔ (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat)))
128, 11anbi12d 632 . . . . 5 (𝑠 = 𝑆 → ((𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat)) ↔ (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat))))
135, 12spcev 3569 . . . 4 ((𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat)) → ∃𝑠(𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat)))
14 cnelsubclem.1 . . . . 5 𝐽 ∈ V
15 fneq1 6591 . . . . . . 7 (𝑗 = 𝐽 → (𝑗 Fn (𝑠 × 𝑠) ↔ 𝐽 Fn (𝑠 × 𝑠)))
16 breq1 5105 . . . . . . . 8 (𝑗 = 𝐽 → (𝑗cat (Homf𝐶) ↔ 𝐽cat (Homf𝐶)))
17 oveq 7375 . . . . . . . . . . 11 (𝑗 = 𝐽 → (𝑥𝑗𝑥) = (𝑥𝐽𝑥))
1817eleq2d 2814 . . . . . . . . . 10 (𝑗 = 𝐽 → (((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥)))
1918ralbidv 3156 . . . . . . . . 9 (𝑗 = 𝐽 → (∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥)))
2019notbid 318 . . . . . . . 8 (𝑗 = 𝐽 → (¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥)))
21 oveq2 7377 . . . . . . . . 9 (𝑗 = 𝐽 → (𝐶cat 𝑗) = (𝐶cat 𝐽))
2221eleq1d 2813 . . . . . . . 8 (𝑗 = 𝐽 → ((𝐶cat 𝑗) ∈ Cat ↔ (𝐶cat 𝐽) ∈ Cat))
2316, 20, 223anbi123d 1438 . . . . . . 7 (𝑗 = 𝐽 → ((𝑗cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶cat 𝑗) ∈ Cat) ↔ (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat)))
2415, 23anbi12d 632 . . . . . 6 (𝑗 = 𝐽 → ((𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶cat 𝑗) ∈ Cat)) ↔ (𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat))))
2524exbidv 1921 . . . . 5 (𝑗 = 𝐽 → (∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶cat 𝑗) ∈ Cat)) ↔ ∃𝑠(𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat))))
2614, 25spcev 3569 . . . 4 (∃𝑠(𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat)) → ∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶cat 𝑗) ∈ Cat)))
2713, 26syl 17 . . 3 ((𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽cat (Homf𝐶) ∧ ¬ ∀𝑥𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat)) → ∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶cat 𝑗) ∈ Cat)))
283, 4, 27mp2an 692 . 2 𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶cat 𝑗) ∈ Cat))
29 fveq2 6840 . . . . . . 7 (𝑐 = 𝐶 → (Homf𝑐) = (Homf𝐶))
3029breq2d 5114 . . . . . 6 (𝑐 = 𝐶 → (𝑗cat (Homf𝑐) ↔ 𝑗cat (Homf𝐶)))
31 fveq2 6840 . . . . . . . . . 10 (𝑐 = 𝐶 → (Id‘𝑐) = (Id‘𝐶))
3231fveq1d 6842 . . . . . . . . 9 (𝑐 = 𝐶 → ((Id‘𝑐)‘𝑥) = ((Id‘𝐶)‘𝑥))
3332eleq1d 2813 . . . . . . . 8 (𝑐 = 𝐶 → (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥)))
3433ralbidv 3156 . . . . . . 7 (𝑐 = 𝐶 → (∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥)))
3534notbid 318 . . . . . 6 (𝑐 = 𝐶 → (¬ ∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥)))
36 oveq1 7376 . . . . . . 7 (𝑐 = 𝐶 → (𝑐cat 𝑗) = (𝐶cat 𝑗))
3736eleq1d 2813 . . . . . 6 (𝑐 = 𝐶 → ((𝑐cat 𝑗) ∈ Cat ↔ (𝐶cat 𝑗) ∈ Cat))
3830, 35, 373anbi123d 1438 . . . . 5 (𝑐 = 𝐶 → ((𝑗cat (Homf𝑐) ∧ ¬ ∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝑐cat 𝑗) ∈ Cat) ↔ (𝑗cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶cat 𝑗) ∈ Cat)))
3938anbi2d 630 . . . 4 (𝑐 = 𝐶 → ((𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝑐) ∧ ¬ ∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝑐cat 𝑗) ∈ Cat)) ↔ (𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶cat 𝑗) ∈ Cat))))
40392exbidv 1924 . . 3 (𝑐 = 𝐶 → (∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝑐) ∧ ¬ ∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝑐cat 𝑗) ∈ Cat)) ↔ ∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶cat 𝑗) ∈ Cat))))
4140rspcev 3585 . 2 ((𝐶 ∈ Cat ∧ ∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝐶) ∧ ¬ ∀𝑥𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶cat 𝑗) ∈ Cat))) → ∃𝑐 ∈ Cat ∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝑐) ∧ ¬ ∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝑐cat 𝑗) ∈ Cat)))
422, 28, 41mp2an 692 1 𝑐 ∈ Cat ∃𝑗𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗cat (Homf𝑐) ∧ ¬ ∀𝑥𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝑐cat 𝑗) ∈ Cat))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3444   class class class wbr 5102   × cxp 5629   Fn wfn 6494  cfv 6499  (class class class)co 7369  Catccat 17605  Idccid 17606  Homf chomf 17607  cat cssc 17749  cat cresc 17750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507  df-ov 7372
This theorem is referenced by:  cnelsubc  49586
  Copyright terms: Public domain W3C validator