Proof of Theorem cnelsubclem
| Step | Hyp | Ref
| Expression |
| 1 | | cnelsubclem.3 |
. . 3
⊢ (𝐶 ∈ Cat ∧ 𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽 ⊆cat
(Homf ‘𝐶) ∧ ¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶 ↾cat 𝐽) ∈ Cat)) |
| 2 | 1 | simp1i 1139 |
. 2
⊢ 𝐶 ∈ Cat |
| 3 | 1 | simp2i 1140 |
. . 3
⊢ 𝐽 Fn (𝑆 × 𝑆) |
| 4 | 1 | simp3i 1141 |
. . 3
⊢ (𝐽 ⊆cat
(Homf ‘𝐶) ∧ ¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶 ↾cat 𝐽) ∈ Cat) |
| 5 | | cnelsubclem.2 |
. . . . 5
⊢ 𝑆 ∈ V |
| 6 | | id 22 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → 𝑠 = 𝑆) |
| 7 | 6 | sqxpeqd 5684 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (𝑠 × 𝑠) = (𝑆 × 𝑆)) |
| 8 | 7 | fneq2d 6629 |
. . . . . 6
⊢ (𝑠 = 𝑆 → (𝐽 Fn (𝑠 × 𝑠) ↔ 𝐽 Fn (𝑆 × 𝑆))) |
| 9 | | raleq 3300 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥))) |
| 10 | 9 | notbid 318 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥))) |
| 11 | 10 | 3anbi2d 1442 |
. . . . . 6
⊢ (𝑠 = 𝑆 → ((𝐽 ⊆cat
(Homf ‘𝐶) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶 ↾cat 𝐽) ∈ Cat) ↔ (𝐽 ⊆cat
(Homf ‘𝐶) ∧ ¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶 ↾cat 𝐽) ∈ Cat))) |
| 12 | 8, 11 | anbi12d 632 |
. . . . 5
⊢ (𝑠 = 𝑆 → ((𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽 ⊆cat
(Homf ‘𝐶) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶 ↾cat 𝐽) ∈ Cat)) ↔ (𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽 ⊆cat
(Homf ‘𝐶) ∧ ¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶 ↾cat 𝐽) ∈ Cat)))) |
| 13 | 5, 12 | spcev 3583 |
. . . 4
⊢ ((𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽 ⊆cat
(Homf ‘𝐶) ∧ ¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶 ↾cat 𝐽) ∈ Cat)) → ∃𝑠(𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽 ⊆cat
(Homf ‘𝐶) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶 ↾cat 𝐽) ∈ Cat))) |
| 14 | | cnelsubclem.1 |
. . . . 5
⊢ 𝐽 ∈ V |
| 15 | | fneq1 6626 |
. . . . . . 7
⊢ (𝑗 = 𝐽 → (𝑗 Fn (𝑠 × 𝑠) ↔ 𝐽 Fn (𝑠 × 𝑠))) |
| 16 | | breq1 5120 |
. . . . . . . 8
⊢ (𝑗 = 𝐽 → (𝑗 ⊆cat
(Homf ‘𝐶) ↔ 𝐽 ⊆cat
(Homf ‘𝐶))) |
| 17 | | oveq 7406 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝐽 → (𝑥𝑗𝑥) = (𝑥𝐽𝑥)) |
| 18 | 17 | eleq2d 2819 |
. . . . . . . . . 10
⊢ (𝑗 = 𝐽 → (((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥))) |
| 19 | 18 | ralbidv 3161 |
. . . . . . . . 9
⊢ (𝑗 = 𝐽 → (∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥))) |
| 20 | 19 | notbid 318 |
. . . . . . . 8
⊢ (𝑗 = 𝐽 → (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥))) |
| 21 | | oveq2 7408 |
. . . . . . . . 9
⊢ (𝑗 = 𝐽 → (𝐶 ↾cat 𝑗) = (𝐶 ↾cat 𝐽)) |
| 22 | 21 | eleq1d 2818 |
. . . . . . . 8
⊢ (𝑗 = 𝐽 → ((𝐶 ↾cat 𝑗) ∈ Cat ↔ (𝐶 ↾cat 𝐽) ∈ Cat)) |
| 23 | 16, 20, 22 | 3anbi123d 1437 |
. . . . . . 7
⊢ (𝑗 = 𝐽 → ((𝑗 ⊆cat
(Homf ‘𝐶) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶 ↾cat 𝑗) ∈ Cat) ↔ (𝐽 ⊆cat
(Homf ‘𝐶) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶 ↾cat 𝐽) ∈ Cat))) |
| 24 | 15, 23 | anbi12d 632 |
. . . . . 6
⊢ (𝑗 = 𝐽 → ((𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat
(Homf ‘𝐶) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶 ↾cat 𝑗) ∈ Cat)) ↔ (𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽 ⊆cat
(Homf ‘𝐶) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶 ↾cat 𝐽) ∈ Cat)))) |
| 25 | 24 | exbidv 1920 |
. . . . 5
⊢ (𝑗 = 𝐽 → (∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat
(Homf ‘𝐶) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶 ↾cat 𝑗) ∈ Cat)) ↔ ∃𝑠(𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽 ⊆cat
(Homf ‘𝐶) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶 ↾cat 𝐽) ∈ Cat)))) |
| 26 | 14, 25 | spcev 3583 |
. . . 4
⊢
(∃𝑠(𝐽 Fn (𝑠 × 𝑠) ∧ (𝐽 ⊆cat
(Homf ‘𝐶) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶 ↾cat 𝐽) ∈ Cat)) → ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat
(Homf ‘𝐶) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶 ↾cat 𝑗) ∈ Cat))) |
| 27 | 13, 26 | syl 17 |
. . 3
⊢ ((𝐽 Fn (𝑆 × 𝑆) ∧ (𝐽 ⊆cat
(Homf ‘𝐶) ∧ ¬ ∀𝑥 ∈ 𝑆 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶 ↾cat 𝐽) ∈ Cat)) → ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat
(Homf ‘𝐶) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶 ↾cat 𝑗) ∈ Cat))) |
| 28 | 3, 4, 27 | mp2an 692 |
. 2
⊢
∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat
(Homf ‘𝐶) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶 ↾cat 𝑗) ∈ Cat)) |
| 29 | | fveq2 6873 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (Homf ‘𝑐) = (Homf
‘𝐶)) |
| 30 | 29 | breq2d 5129 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (𝑗 ⊆cat
(Homf ‘𝑐) ↔ 𝑗 ⊆cat
(Homf ‘𝐶))) |
| 31 | | fveq2 6873 |
. . . . . . . . . 10
⊢ (𝑐 = 𝐶 → (Id‘𝑐) = (Id‘𝐶)) |
| 32 | 31 | fveq1d 6875 |
. . . . . . . . 9
⊢ (𝑐 = 𝐶 → ((Id‘𝑐)‘𝑥) = ((Id‘𝐶)‘𝑥)) |
| 33 | 32 | eleq1d 2818 |
. . . . . . . 8
⊢ (𝑐 = 𝐶 → (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥))) |
| 34 | 33 | ralbidv 3161 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥))) |
| 35 | 34 | notbid 318 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ↔ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥))) |
| 36 | | oveq1 7407 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (𝑐 ↾cat 𝑗) = (𝐶 ↾cat 𝑗)) |
| 37 | 36 | eleq1d 2818 |
. . . . . 6
⊢ (𝑐 = 𝐶 → ((𝑐 ↾cat 𝑗) ∈ Cat ↔ (𝐶 ↾cat 𝑗) ∈ Cat)) |
| 38 | 30, 35, 37 | 3anbi123d 1437 |
. . . . 5
⊢ (𝑐 = 𝐶 → ((𝑗 ⊆cat
(Homf ‘𝑐) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝑐 ↾cat 𝑗) ∈ Cat) ↔ (𝑗 ⊆cat
(Homf ‘𝐶) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶 ↾cat 𝑗) ∈ Cat))) |
| 39 | 38 | anbi2d 630 |
. . . 4
⊢ (𝑐 = 𝐶 → ((𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝑐 ↾cat 𝑗) ∈ Cat)) ↔ (𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat
(Homf ‘𝐶) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶 ↾cat 𝑗) ∈ Cat)))) |
| 40 | 39 | 2exbidv 1923 |
. . 3
⊢ (𝑐 = 𝐶 → (∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝑐 ↾cat 𝑗) ∈ Cat)) ↔ ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat
(Homf ‘𝐶) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶 ↾cat 𝑗) ∈ Cat)))) |
| 41 | 40 | rspcev 3599 |
. 2
⊢ ((𝐶 ∈ Cat ∧ ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat
(Homf ‘𝐶) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝐶)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝐶 ↾cat 𝑗) ∈ Cat))) → ∃𝑐 ∈ Cat ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝑐 ↾cat 𝑗) ∈ Cat))) |
| 42 | 2, 28, 41 | mp2an 692 |
1
⊢
∃𝑐 ∈ Cat
∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat
(Homf ‘𝑐) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝑐 ↾cat 𝑗) ∈ Cat)) |