| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnelsubc | Structured version Visualization version GIF version | ||
| Description: Remark 4.2(2) of [Adamek] p. 48. There exists a category satisfying all conditions for a subcategory but the compatibility of identity morphisms. Therefore such condition in df-subc 17812 is necessary. A stronger statement than nelsubc3 48932. (Contributed by Zhi Wang, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| cnelsubc | ⊢ ∃𝑐 ∈ Cat ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat (Homf ‘𝑐) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝑐 ↾cat 𝑗) ∈ Cat)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6886 | . 2 ⊢ (Homf ‘(SetCat‘1o)) ∈ V | |
| 2 | 1oex 8485 | . 2 ⊢ 1o ∈ V | |
| 3 | eqid 2734 | . . 3 ⊢ {〈(Base‘ndx), {∅}〉, 〈(Hom ‘ndx), {〈∅, ∅, 2o〉}〉, 〈(comp‘ndx), {〈〈∅, ∅〉, ∅, (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓 ∩ 𝑔))〉}〉} = {〈(Base‘ndx), {∅}〉, 〈(Hom ‘ndx), {〈∅, ∅, 2o〉}〉, 〈(comp‘ndx), {〈〈∅, ∅〉, ∅, (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓 ∩ 𝑔))〉}〉} | |
| 4 | eqid 2734 | . . 3 ⊢ (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓 ∩ 𝑔)) = (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓 ∩ 𝑔)) | |
| 5 | eqid 2734 | . . 3 ⊢ (SetCat‘1o) = (SetCat‘1o) | |
| 6 | eqid 2734 | . . 3 ⊢ (Homf ‘(SetCat‘1o)) = (Homf ‘(SetCat‘1o)) | |
| 7 | eqid 2734 | . . 3 ⊢ 1o = 1o | |
| 8 | eqid 2734 | . . 3 ⊢ (Homf ‘{〈(Base‘ndx), {∅}〉, 〈(Hom ‘ndx), {〈∅, ∅, 2o〉}〉, 〈(comp‘ndx), {〈〈∅, ∅〉, ∅, (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓 ∩ 𝑔))〉}〉}) = (Homf ‘{〈(Base‘ndx), {∅}〉, 〈(Hom ‘ndx), {〈∅, ∅, 2o〉}〉, 〈(comp‘ndx), {〈〈∅, ∅〉, ∅, (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓 ∩ 𝑔))〉}〉}) | |
| 9 | eqid 2734 | . . 3 ⊢ (Id‘{〈(Base‘ndx), {∅}〉, 〈(Hom ‘ndx), {〈∅, ∅, 2o〉}〉, 〈(comp‘ndx), {〈〈∅, ∅〉, ∅, (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓 ∩ 𝑔))〉}〉}) = (Id‘{〈(Base‘ndx), {∅}〉, 〈(Hom ‘ndx), {〈∅, ∅, 2o〉}〉, 〈(comp‘ndx), {〈〈∅, ∅〉, ∅, (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓 ∩ 𝑔))〉}〉}) | |
| 10 | eqid 2734 | . . 3 ⊢ ({〈(Base‘ndx), {∅}〉, 〈(Hom ‘ndx), {〈∅, ∅, 2o〉}〉, 〈(comp‘ndx), {〈〈∅, ∅〉, ∅, (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓 ∩ 𝑔))〉}〉} ↾cat (Homf ‘(SetCat‘1o))) = ({〈(Base‘ndx), {∅}〉, 〈(Hom ‘ndx), {〈∅, ∅, 2o〉}〉, 〈(comp‘ndx), {〈〈∅, ∅〉, ∅, (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓 ∩ 𝑔))〉}〉} ↾cat (Homf ‘(SetCat‘1o))) | |
| 11 | 3, 4, 5, 6, 7, 8, 9, 10 | setc1onsubc 49340 | . 2 ⊢ ({〈(Base‘ndx), {∅}〉, 〈(Hom ‘ndx), {〈∅, ∅, 2o〉}〉, 〈(comp‘ndx), {〈〈∅, ∅〉, ∅, (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓 ∩ 𝑔))〉}〉} ∈ Cat ∧ (Homf ‘(SetCat‘1o)) Fn (1o × 1o) ∧ ((Homf ‘(SetCat‘1o)) ⊆cat (Homf ‘{〈(Base‘ndx), {∅}〉, 〈(Hom ‘ndx), {〈∅, ∅, 2o〉}〉, 〈(comp‘ndx), {〈〈∅, ∅〉, ∅, (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓 ∩ 𝑔))〉}〉}) ∧ ¬ ∀𝑥 ∈ 1o ((Id‘{〈(Base‘ndx), {∅}〉, 〈(Hom ‘ndx), {〈∅, ∅, 2o〉}〉, 〈(comp‘ndx), {〈〈∅, ∅〉, ∅, (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓 ∩ 𝑔))〉}〉})‘𝑥) ∈ (𝑥(Homf ‘(SetCat‘1o))𝑥) ∧ ({〈(Base‘ndx), {∅}〉, 〈(Hom ‘ndx), {〈∅, ∅, 2o〉}〉, 〈(comp‘ndx), {〈〈∅, ∅〉, ∅, (𝑓 ∈ 2o, 𝑔 ∈ 2o ↦ (𝑓 ∩ 𝑔))〉}〉} ↾cat (Homf ‘(SetCat‘1o))) ∈ Cat)) |
| 12 | 1, 2, 11 | cnelsubclem 49341 | 1 ⊢ ∃𝑐 ∈ Cat ∃𝑗∃𝑠(𝑗 Fn (𝑠 × 𝑠) ∧ (𝑗 ⊆cat (Homf ‘𝑐) ∧ ¬ ∀𝑥 ∈ 𝑠 ((Id‘𝑐)‘𝑥) ∈ (𝑥𝑗𝑥) ∧ (𝑐 ↾cat 𝑗) ∈ Cat)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∧ w3a 1086 ∃wex 1778 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 ∩ cin 3923 ∅c0 4306 {csn 4599 {ctp 4603 〈cop 4605 〈cotp 4607 class class class wbr 5117 × cxp 5650 Fn wfn 6523 ‘cfv 6528 (class class class)co 7400 ∈ cmpo 7402 1oc1o 8468 2oc2o 8469 ndxcnx 17199 Basecbs 17215 Hom chom 17269 compcco 17270 Catccat 17663 Idccid 17664 Homf chomf 17665 ⊆cat cssc 17807 ↾cat cresc 17808 SetCatcsetc 18075 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-reg 9599 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-ot 4608 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-2o 8476 df-er 8714 df-map 8837 df-ixp 8907 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-7 12301 df-8 12302 df-9 12303 df-n0 12495 df-z 12582 df-dec 12702 df-uz 12846 df-fz 13515 df-struct 17153 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-ress 17239 df-hom 17282 df-cco 17283 df-cat 17667 df-cid 17668 df-homf 17669 df-comf 17670 df-ssc 17810 df-resc 17811 df-setc 18076 df-thinc 49167 df-termc 49220 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |