| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cpmatpmat | Structured version Visualization version GIF version | ||
| Description: A constant polynomial matrix is a polynomial matrix. (Contributed by AV, 16-Nov-2019.) |
| Ref | Expression |
|---|---|
| cpmat.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
| cpmat.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| cpmat.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
| cpmat.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| cpmatpmat | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) → 𝑀 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cpmat.s | . . . . 5 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
| 2 | cpmat.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | cpmat.c | . . . . 5 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
| 4 | cpmat.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | 1, 2, 3, 4 | cpmat 22612 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)}) |
| 6 | 5 | eleq2d 2814 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 ↔ 𝑀 ∈ {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)})) |
| 7 | elrabi 3645 | . . 3 ⊢ (𝑀 ∈ {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)} → 𝑀 ∈ 𝐵) | |
| 8 | 6, 7 | biimtrdi 253 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 → 𝑀 ∈ 𝐵)) |
| 9 | 8 | 3impia 1117 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) → 𝑀 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3396 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 ℕcn 12146 Basecbs 17138 0gc0g 17361 Poly1cpl1 22077 coe1cco1 22078 Mat cmat 22310 ConstPolyMat ccpmat 22606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-cpmat 22609 |
| This theorem is referenced by: cpmatelimp 22615 cpmatelimp2 22617 cpmatacl 22619 cpmatinvcl 22620 cpmatmcl 22622 cpm2mf 22655 m2cpminvid2lem 22657 m2cpminvid2 22658 m2cpmfo 22659 m2cpmrngiso 22661 |
| Copyright terms: Public domain | W3C validator |