MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmatpmat Structured version   Visualization version   GIF version

Theorem cpmatpmat 22597
Description: A constant polynomial matrix is a polynomial matrix. (Contributed by AV, 16-Nov-2019.)
Hypotheses
Ref Expression
cpmat.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpmat.p 𝑃 = (Poly1𝑅)
cpmat.c 𝐶 = (𝑁 Mat 𝑃)
cpmat.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
cpmatpmat ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → 𝑀𝐵)

Proof of Theorem cpmatpmat
Dummy variables 𝑚 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpmat.s . . . . 5 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 cpmat.p . . . . 5 𝑃 = (Poly1𝑅)
3 cpmat.c . . . . 5 𝐶 = (𝑁 Mat 𝑃)
4 cpmat.b . . . . 5 𝐵 = (Base‘𝐶)
51, 2, 3, 4cpmat 22596 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑆 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)})
65eleq2d 2814 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆𝑀 ∈ {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)}))
7 elrabi 3654 . . 3 (𝑀 ∈ {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)} → 𝑀𝐵)
86, 7biimtrdi 253 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆𝑀𝐵))
983impia 1117 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → 𝑀𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3405  cfv 6511  (class class class)co 7387  Fincfn 8918  cn 12186  Basecbs 17179  0gc0g 17402  Poly1cpl1 22061  coe1cco1 22062   Mat cmat 22294   ConstPolyMat ccpmat 22590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-cpmat 22593
This theorem is referenced by:  cpmatelimp  22599  cpmatelimp2  22601  cpmatacl  22603  cpmatinvcl  22604  cpmatmcl  22606  cpm2mf  22639  m2cpminvid2lem  22641  m2cpminvid2  22642  m2cpmfo  22643  m2cpmrngiso  22645
  Copyright terms: Public domain W3C validator