MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmatpmat Structured version   Visualization version   GIF version

Theorem cpmatpmat 22219
Description: A constant polynomial matrix is a polynomial matrix. (Contributed by AV, 16-Nov-2019.)
Hypotheses
Ref Expression
cpmat.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpmat.p 𝑃 = (Poly1𝑅)
cpmat.c 𝐶 = (𝑁 Mat 𝑃)
cpmat.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
cpmatpmat ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → 𝑀𝐵)

Proof of Theorem cpmatpmat
Dummy variables 𝑚 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpmat.s . . . . 5 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 cpmat.p . . . . 5 𝑃 = (Poly1𝑅)
3 cpmat.c . . . . 5 𝐶 = (𝑁 Mat 𝑃)
4 cpmat.b . . . . 5 𝐵 = (Base‘𝐶)
51, 2, 3, 4cpmat 22218 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑆 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)})
65eleq2d 2819 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆𝑀 ∈ {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)}))
7 elrabi 3677 . . 3 (𝑀 ∈ {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)} → 𝑀𝐵)
86, 7syl6bi 252 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆𝑀𝐵))
983impia 1117 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → 𝑀𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  {crab 3432  cfv 6543  (class class class)co 7411  Fincfn 8941  cn 12214  Basecbs 17146  0gc0g 17387  Poly1cpl1 21707  coe1cco1 21708   Mat cmat 21914   ConstPolyMat ccpmat 22212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-cpmat 22215
This theorem is referenced by:  cpmatelimp  22221  cpmatelimp2  22223  cpmatacl  22225  cpmatinvcl  22226  cpmatmcl  22228  cpm2mf  22261  m2cpminvid2lem  22263  m2cpminvid2  22264  m2cpmfo  22265  m2cpmrngiso  22267
  Copyright terms: Public domain W3C validator