MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodabs Structured version   Visualization version   GIF version

Theorem fprodabs 14987
Description: The absolute value of a finite product. (Contributed by Scott Fenton, 25-Dec-2017.)
Hypotheses
Ref Expression
fprodabs.1 𝑍 = (ℤ𝑀)
fprodabs.2 (𝜑𝑁𝑍)
fprodabs.3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fprodabs (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprodabs
Dummy variables 𝑎 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodabs.2 . . 3 (𝜑𝑁𝑍)
2 fprodabs.1 . . 3 𝑍 = (ℤ𝑀)
31, 2syl6eleq 2854 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
4 oveq2 6850 . . . . . . 7 (𝑎 = 𝑀 → (𝑀...𝑎) = (𝑀...𝑀))
54prodeq1d 14934 . . . . . 6 (𝑎 = 𝑀 → ∏𝑘 ∈ (𝑀...𝑎)𝐴 = ∏𝑘 ∈ (𝑀...𝑀)𝐴)
65fveq2d 6379 . . . . 5 (𝑎 = 𝑀 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴))
74prodeq1d 14934 . . . . 5 (𝑎 = 𝑀 → ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴))
86, 7eqeq12d 2780 . . . 4 (𝑎 = 𝑀 → ((abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) ↔ (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴)))
98imbi2d 331 . . 3 (𝑎 = 𝑀 → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴)) ↔ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴))))
10 oveq2 6850 . . . . . . 7 (𝑎 = 𝑛 → (𝑀...𝑎) = (𝑀...𝑛))
1110prodeq1d 14934 . . . . . 6 (𝑎 = 𝑛 → ∏𝑘 ∈ (𝑀...𝑎)𝐴 = ∏𝑘 ∈ (𝑀...𝑛)𝐴)
1211fveq2d 6379 . . . . 5 (𝑎 = 𝑛 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴))
1310prodeq1d 14934 . . . . 5 (𝑎 = 𝑛 → ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴))
1412, 13eqeq12d 2780 . . . 4 (𝑎 = 𝑛 → ((abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) ↔ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)))
1514imbi2d 331 . . 3 (𝑎 = 𝑛 → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴)) ↔ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴))))
16 oveq2 6850 . . . . . . 7 (𝑎 = (𝑛 + 1) → (𝑀...𝑎) = (𝑀...(𝑛 + 1)))
1716prodeq1d 14934 . . . . . 6 (𝑎 = (𝑛 + 1) → ∏𝑘 ∈ (𝑀...𝑎)𝐴 = ∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴)
1817fveq2d 6379 . . . . 5 (𝑎 = (𝑛 + 1) → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴))
1916prodeq1d 14934 . . . . 5 (𝑎 = (𝑛 + 1) → ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))
2018, 19eqeq12d 2780 . . . 4 (𝑎 = (𝑛 + 1) → ((abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) ↔ (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴)))
2120imbi2d 331 . . 3 (𝑎 = (𝑛 + 1) → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴)) ↔ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))))
22 oveq2 6850 . . . . . . 7 (𝑎 = 𝑁 → (𝑀...𝑎) = (𝑀...𝑁))
2322prodeq1d 14934 . . . . . 6 (𝑎 = 𝑁 → ∏𝑘 ∈ (𝑀...𝑎)𝐴 = ∏𝑘 ∈ (𝑀...𝑁)𝐴)
2423fveq2d 6379 . . . . 5 (𝑎 = 𝑁 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴))
2522prodeq1d 14934 . . . . 5 (𝑎 = 𝑁 → ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴))
2624, 25eqeq12d 2780 . . . 4 (𝑎 = 𝑁 → ((abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) ↔ (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴)))
2726imbi2d 331 . . 3 (𝑎 = 𝑁 → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴)) ↔ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴))))
28 csbfv2g 6420 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 / 𝑘(abs‘𝐴) = (abs‘𝑀 / 𝑘𝐴))
2928adantl 473 . . . . 5 ((𝜑𝑀 ∈ ℤ) → 𝑀 / 𝑘(abs‘𝐴) = (abs‘𝑀 / 𝑘𝐴))
30 fzsn 12590 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
3130adantl 473 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → (𝑀...𝑀) = {𝑀})
3231prodeq1d 14934 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴) = ∏𝑘 ∈ {𝑀} (abs‘𝐴))
33 simpr 477 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
34 uzid 11901 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
3534, 2syl6eleqr 2855 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀𝑍)
36 fprodabs.3 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
3736ralrimiva 3113 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝑍 𝐴 ∈ ℂ)
38 nfcsb1v 3707 . . . . . . . . . . . . . 14 𝑘𝑀 / 𝑘𝐴
3938nfel1 2922 . . . . . . . . . . . . 13 𝑘𝑀 / 𝑘𝐴 ∈ ℂ
40 csbeq1a 3700 . . . . . . . . . . . . . 14 (𝑘 = 𝑀𝐴 = 𝑀 / 𝑘𝐴)
4140eleq1d 2829 . . . . . . . . . . . . 13 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝑀 / 𝑘𝐴 ∈ ℂ))
4239, 41rspc 3455 . . . . . . . . . . . 12 (𝑀𝑍 → (∀𝑘𝑍 𝐴 ∈ ℂ → 𝑀 / 𝑘𝐴 ∈ ℂ))
4337, 42mpan9 502 . . . . . . . . . . 11 ((𝜑𝑀𝑍) → 𝑀 / 𝑘𝐴 ∈ ℂ)
4435, 43sylan2 586 . . . . . . . . . 10 ((𝜑𝑀 ∈ ℤ) → 𝑀 / 𝑘𝐴 ∈ ℂ)
4544abscld 14460 . . . . . . . . 9 ((𝜑𝑀 ∈ ℤ) → (abs‘𝑀 / 𝑘𝐴) ∈ ℝ)
4645recnd 10322 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → (abs‘𝑀 / 𝑘𝐴) ∈ ℂ)
4729, 46eqeltrd 2844 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → 𝑀 / 𝑘(abs‘𝐴) ∈ ℂ)
48 prodsns 14985 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑀 / 𝑘(abs‘𝐴) ∈ ℂ) → ∏𝑘 ∈ {𝑀} (abs‘𝐴) = 𝑀 / 𝑘(abs‘𝐴))
4933, 47, 48syl2anc 579 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ {𝑀} (abs‘𝐴) = 𝑀 / 𝑘(abs‘𝐴))
5032, 49eqtrd 2799 . . . . 5 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴) = 𝑀 / 𝑘(abs‘𝐴))
5130prodeq1d 14934 . . . . . . . 8 (𝑀 ∈ ℤ → ∏𝑘 ∈ (𝑀...𝑀)𝐴 = ∏𝑘 ∈ {𝑀}𝐴)
5251adantl 473 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ (𝑀...𝑀)𝐴 = ∏𝑘 ∈ {𝑀}𝐴)
53 prodsns 14985 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑀 / 𝑘𝐴 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝑀 / 𝑘𝐴)
5433, 44, 53syl2anc 579 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝑀 / 𝑘𝐴)
5552, 54eqtrd 2799 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ (𝑀...𝑀)𝐴 = 𝑀 / 𝑘𝐴)
5655fveq2d 6379 . . . . 5 ((𝜑𝑀 ∈ ℤ) → (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = (abs‘𝑀 / 𝑘𝐴))
5729, 50, 563eqtr4rd 2810 . . . 4 ((𝜑𝑀 ∈ ℤ) → (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴))
5857expcom 402 . . 3 (𝑀 ∈ ℤ → (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴)))
59 simp3 1168 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴))
60 ovex 6874 . . . . . . . . . . 11 (𝑛 + 1) ∈ V
61 csbfv2g 6420 . . . . . . . . . . 11 ((𝑛 + 1) ∈ V → (𝑛 + 1) / 𝑘(abs‘𝐴) = (abs‘(𝑛 + 1) / 𝑘𝐴))
6260, 61ax-mp 5 . . . . . . . . . 10 (𝑛 + 1) / 𝑘(abs‘𝐴) = (abs‘(𝑛 + 1) / 𝑘𝐴)
6362eqcomi 2774 . . . . . . . . 9 (abs‘(𝑛 + 1) / 𝑘𝐴) = (𝑛 + 1) / 𝑘(abs‘𝐴)
6463a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (abs‘(𝑛 + 1) / 𝑘𝐴) = (𝑛 + 1) / 𝑘(abs‘𝐴))
6559, 64oveq12d 6860 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) · (abs‘(𝑛 + 1) / 𝑘𝐴)) = (∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) · (𝑛 + 1) / 𝑘(abs‘𝐴)))
66 simpr 477 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ (ℤ𝑀))
67 elfzuz 12545 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...(𝑛 + 1)) → 𝑘 ∈ (ℤ𝑀))
6867, 2syl6eleqr 2855 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...(𝑛 + 1)) → 𝑘𝑍)
6968, 36sylan2 586 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀...(𝑛 + 1))) → 𝐴 ∈ ℂ)
7069adantlr 706 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...(𝑛 + 1))) → 𝐴 ∈ ℂ)
7166, 70fprodp1s 14984 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → ∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴 = (∏𝑘 ∈ (𝑀...𝑛)𝐴 · (𝑛 + 1) / 𝑘𝐴))
7271fveq2d 6379 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = (abs‘(∏𝑘 ∈ (𝑀...𝑛)𝐴 · (𝑛 + 1) / 𝑘𝐴)))
73 fzfid 12980 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝑀...𝑛) ∈ Fin)
74 elfzuz 12545 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
7574, 2syl6eleqr 2855 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
7675, 36sylan2 586 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀...𝑛)) → 𝐴 ∈ ℂ)
7776adantlr 706 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝐴 ∈ ℂ)
7873, 77fprodcl 14965 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → ∏𝑘 ∈ (𝑀...𝑛)𝐴 ∈ ℂ)
79 peano2uz 11941 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ (ℤ𝑀))
8079, 2syl6eleqr 2855 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ 𝑍)
81 nfcsb1v 3707 . . . . . . . . . . . . . 14 𝑘(𝑛 + 1) / 𝑘𝐴
8281nfel1 2922 . . . . . . . . . . . . 13 𝑘(𝑛 + 1) / 𝑘𝐴 ∈ ℂ
83 csbeq1a 3700 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 + 1) → 𝐴 = (𝑛 + 1) / 𝑘𝐴)
8483eleq1d 2829 . . . . . . . . . . . . 13 (𝑘 = (𝑛 + 1) → (𝐴 ∈ ℂ ↔ (𝑛 + 1) / 𝑘𝐴 ∈ ℂ))
8582, 84rspc 3455 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ 𝑍 → (∀𝑘𝑍 𝐴 ∈ ℂ → (𝑛 + 1) / 𝑘𝐴 ∈ ℂ))
8637, 85mpan9 502 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝑛 + 1) / 𝑘𝐴 ∈ ℂ)
8780, 86sylan2 586 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝑛 + 1) / 𝑘𝐴 ∈ ℂ)
8878, 87absmuld 14478 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (abs‘(∏𝑘 ∈ (𝑀...𝑛)𝐴 · (𝑛 + 1) / 𝑘𝐴)) = ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) · (abs‘(𝑛 + 1) / 𝑘𝐴)))
8972, 88eqtrd 2799 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) · (abs‘(𝑛 + 1) / 𝑘𝐴)))
90893adant3 1162 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) · (abs‘(𝑛 + 1) / 𝑘𝐴)))
9170abscld 14460 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...(𝑛 + 1))) → (abs‘𝐴) ∈ ℝ)
9291recnd 10322 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...(𝑛 + 1))) → (abs‘𝐴) ∈ ℂ)
9366, 92fprodp1s 14984 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴) = (∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) · (𝑛 + 1) / 𝑘(abs‘𝐴)))
94933adant3 1162 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴) = (∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) · (𝑛 + 1) / 𝑘(abs‘𝐴)))
9565, 90, 943eqtr4d 2809 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))
96953exp 1148 . . . . 5 (𝜑 → (𝑛 ∈ (ℤ𝑀) → ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))))
9796com12 32 . . . 4 (𝑛 ∈ (ℤ𝑀) → (𝜑 → ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))))
9897a2d 29 . . 3 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (𝜑 → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))))
999, 15, 21, 27, 58, 98uzind4 11946 . 2 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴)))
1003, 99mpcom 38 1 (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  wral 3055  Vcvv 3350  csb 3691  {csn 4334  cfv 6068  (class class class)co 6842  cc 10187  1c1 10190   + caddc 10192   · cmul 10194  cz 11624  cuz 11886  ...cfz 12533  abscabs 14259  cprod 14918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-prod 14919
This theorem is referenced by:  etransclem23  41111
  Copyright terms: Public domain W3C validator