Step | Hyp | Ref
| Expression |
1 | | swrdsb0eq 14304 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ 𝑁 ≤ 𝑀) → (𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉)) |
2 | 1 | 3expa 1116 |
. . . . 5
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0))
∧ 𝑁 ≤ 𝑀) → (𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉)) |
3 | 2 | ancoms 458 |
. . . 4
⊢ ((𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)))
→ (𝑊 substr
〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉)) |
4 | 3 | 3adantr3 1169 |
. . 3
⊢ ((𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈)))) → (𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉)) |
5 | | ral0 4440 |
. . . . . . 7
⊢
∀𝑖 ∈
∅ (𝑊‘𝑖) = (𝑈‘𝑖) |
6 | | nn0z 12273 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℤ) |
7 | | nn0z 12273 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
8 | | fzon 13336 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 𝑀 ↔ (𝑀..^𝑁) = ∅)) |
9 | 6, 7, 8 | syl2an 595 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑁 ≤ 𝑀 ↔ (𝑀..^𝑁) = ∅)) |
10 | 9 | biimpa 476 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑁 ≤ 𝑀) → (𝑀..^𝑁) = ∅) |
11 | 10 | raleqdv 3339 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑁 ≤ 𝑀) → (∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖) ↔ ∀𝑖 ∈ ∅ (𝑊‘𝑖) = (𝑈‘𝑖))) |
12 | 5, 11 | mpbiri 257 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑁 ≤ 𝑀) → ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖)) |
13 | 12 | ex 412 |
. . . . 5
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑁 ≤ 𝑀 → ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
14 | 13 | 3ad2ant2 1132 |
. . . 4
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → (𝑁 ≤ 𝑀 → ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
15 | 14 | impcom 407 |
. . 3
⊢ ((𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈)))) → ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖)) |
16 | 4, 15 | 2thd 264 |
. 2
⊢ ((𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈)))) → ((𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
17 | | swrdcl 14286 |
. . . . . 6
⊢ (𝑊 ∈ Word 𝑉 → (𝑊 substr 〈𝑀, 𝑁〉) ∈ Word 𝑉) |
18 | | swrdcl 14286 |
. . . . . 6
⊢ (𝑈 ∈ Word 𝑉 → (𝑈 substr 〈𝑀, 𝑁〉) ∈ Word 𝑉) |
19 | | eqwrd 14188 |
. . . . . 6
⊢ (((𝑊 substr 〈𝑀, 𝑁〉) ∈ Word 𝑉 ∧ (𝑈 substr 〈𝑀, 𝑁〉) ∈ Word 𝑉) → ((𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉) ↔ ((♯‘(𝑊 substr 〈𝑀, 𝑁〉)) = (♯‘(𝑈 substr 〈𝑀, 𝑁〉)) ∧ ∀𝑗 ∈ (0..^(♯‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗)))) |
20 | 17, 18, 19 | syl2an 595 |
. . . . 5
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) → ((𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉) ↔ ((♯‘(𝑊 substr 〈𝑀, 𝑁〉)) = (♯‘(𝑈 substr 〈𝑀, 𝑁〉)) ∧ ∀𝑗 ∈ (0..^(♯‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗)))) |
21 | 20 | 3ad2ant1 1131 |
. . . 4
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → ((𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉) ↔ ((♯‘(𝑊 substr 〈𝑀, 𝑁〉)) = (♯‘(𝑈 substr 〈𝑀, 𝑁〉)) ∧ ∀𝑗 ∈ (0..^(♯‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗)))) |
22 | 21 | adantl 481 |
. . 3
⊢ ((¬
𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈)))) → ((𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉) ↔ ((♯‘(𝑊 substr 〈𝑀, 𝑁〉)) = (♯‘(𝑈 substr 〈𝑀, 𝑁〉)) ∧ ∀𝑗 ∈ (0..^(♯‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗)))) |
23 | | swrdsbslen 14305 |
. . . . 5
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → (♯‘(𝑊 substr 〈𝑀, 𝑁〉)) = (♯‘(𝑈 substr 〈𝑀, 𝑁〉))) |
24 | 23 | adantl 481 |
. . . 4
⊢ ((¬
𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈)))) →
(♯‘(𝑊 substr
〈𝑀, 𝑁〉)) = (♯‘(𝑈 substr 〈𝑀, 𝑁〉))) |
25 | 24 | biantrurd 532 |
. . 3
⊢ ((¬
𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈)))) → (∀𝑗 ∈
(0..^(♯‘(𝑊
substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ((♯‘(𝑊 substr 〈𝑀, 𝑁〉)) = (♯‘(𝑈 substr 〈𝑀, 𝑁〉)) ∧ ∀𝑗 ∈ (0..^(♯‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗)))) |
26 | | nn0re 12172 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℝ) |
27 | | nn0re 12172 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
28 | | ltnle 10985 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 ↔ ¬ 𝑁 ≤ 𝑀)) |
29 | | ltle 10994 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 → 𝑀 ≤ 𝑁)) |
30 | 28, 29 | sylbird 259 |
. . . . . . 7
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (¬
𝑁 ≤ 𝑀 → 𝑀 ≤ 𝑁)) |
31 | 26, 27, 30 | syl2an 595 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (¬ 𝑁 ≤ 𝑀 → 𝑀 ≤ 𝑁)) |
32 | 31 | 3ad2ant2 1132 |
. . . . 5
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → (¬ 𝑁 ≤ 𝑀 → 𝑀 ≤ 𝑁)) |
33 | | simpl1l 1222 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → 𝑊 ∈ Word 𝑉) |
34 | | simpl2l 1224 |
. . . . . . . . . . 11
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈
ℕ0) |
35 | 6, 7 | anim12i 612 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
36 | 35 | 3ad2ant2 1132 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
37 | 36 | anim1i 614 |
. . . . . . . . . . . . 13
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≤ 𝑁)) |
38 | | df-3an 1087 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≤ 𝑁)) |
39 | 37, 38 | sylibr 233 |
. . . . . . . . . . . 12
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
40 | | eluz2 12517 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
41 | 39, 40 | sylibr 233 |
. . . . . . . . . . 11
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) |
42 | 34, 41 | jca 511 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (𝑀 ∈ ℕ0 ∧ 𝑁 ∈
(ℤ≥‘𝑀))) |
43 | | simpl3l 1226 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → 𝑁 ≤ (♯‘𝑊)) |
44 | | swrdlen2 14301 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈
(ℤ≥‘𝑀)) ∧ 𝑁 ≤ (♯‘𝑊)) → (♯‘(𝑊 substr 〈𝑀, 𝑁〉)) = (𝑁 − 𝑀)) |
45 | 33, 42, 43, 44 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (♯‘(𝑊 substr 〈𝑀, 𝑁〉)) = (𝑁 − 𝑀)) |
46 | 45 | oveq2d 7271 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (0..^(♯‘(𝑊 substr 〈𝑀, 𝑁〉))) = (0..^(𝑁 − 𝑀))) |
47 | 46 | raleqdv 3339 |
. . . . . . 7
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (∀𝑗 ∈ (0..^(♯‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑗 ∈ (0..^(𝑁 − 𝑀))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗))) |
48 | | 0zd 12261 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → 0 ∈
ℤ) |
49 | | zsubcl 12292 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 − 𝑀) ∈ ℤ) |
50 | 7, 6, 49 | syl2anr 596 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑁 − 𝑀) ∈ ℤ) |
51 | 50 | 3ad2ant2 1132 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → (𝑁 − 𝑀) ∈ ℤ) |
52 | 6 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → 𝑀 ∈ ℤ) |
53 | 52 | 3ad2ant2 1132 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → 𝑀 ∈ ℤ) |
54 | | fzoshftral 13432 |
. . . . . . . . 9
⊢ ((0
∈ ℤ ∧ (𝑁
− 𝑀) ∈ ℤ
∧ 𝑀 ∈ ℤ)
→ (∀𝑗 ∈
(0..^(𝑁 − 𝑀))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ ((0 + 𝑀)..^((𝑁 − 𝑀) + 𝑀))[(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗))) |
55 | 48, 51, 53, 54 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → (∀𝑗 ∈ (0..^(𝑁 − 𝑀))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ ((0 + 𝑀)..^((𝑁 − 𝑀) + 𝑀))[(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗))) |
56 | 55 | adantr 480 |
. . . . . . 7
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (∀𝑗 ∈ (0..^(𝑁 − 𝑀))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ ((0 + 𝑀)..^((𝑁 − 𝑀) + 𝑀))[(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗))) |
57 | | nn0cn 12173 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
58 | | nn0cn 12173 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℂ) |
59 | | addid2 11088 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℂ → (0 +
𝑀) = 𝑀) |
60 | 59 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (0 +
𝑀) = 𝑀) |
61 | | npcan 11160 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁 − 𝑀) + 𝑀) = 𝑁) |
62 | 60, 61 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((0 +
𝑀)..^((𝑁 − 𝑀) + 𝑀)) = (𝑀..^𝑁)) |
63 | 57, 58, 62 | syl2anr 596 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((0 + 𝑀)..^((𝑁 − 𝑀) + 𝑀)) = (𝑀..^𝑁)) |
64 | 63 | 3ad2ant2 1132 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → ((0 + 𝑀)..^((𝑁 − 𝑀) + 𝑀)) = (𝑀..^𝑁)) |
65 | 64 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → ((0 + 𝑀)..^((𝑁 − 𝑀) + 𝑀)) = (𝑀..^𝑁)) |
66 | 65 | raleqdv 3339 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (∀𝑖 ∈ ((0 + 𝑀)..^((𝑁 − 𝑀) + 𝑀))[(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)[(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗))) |
67 | | ovex 7288 |
. . . . . . . . . . 11
⊢ (𝑖 − 𝑀) ∈ V |
68 | | sbceqg 4340 |
. . . . . . . . . . . 12
⊢ ((𝑖 − 𝑀) ∈ V → ([(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ⦋(𝑖 − 𝑀) / 𝑗⦌((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ⦋(𝑖 − 𝑀) / 𝑗⦌((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗))) |
69 | | csbfv2g 6800 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 − 𝑀) ∈ V → ⦋(𝑖 − 𝑀) / 𝑗⦌((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑊 substr 〈𝑀, 𝑁〉)‘⦋(𝑖 − 𝑀) / 𝑗⦌𝑗)) |
70 | | csbvarg 4362 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 − 𝑀) ∈ V → ⦋(𝑖 − 𝑀) / 𝑗⦌𝑗 = (𝑖 − 𝑀)) |
71 | 70 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 − 𝑀) ∈ V → ((𝑊 substr 〈𝑀, 𝑁〉)‘⦋(𝑖 − 𝑀) / 𝑗⦌𝑗) = ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀))) |
72 | 69, 71 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝑖 − 𝑀) ∈ V → ⦋(𝑖 − 𝑀) / 𝑗⦌((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀))) |
73 | | csbfv2g 6800 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 − 𝑀) ∈ V → ⦋(𝑖 − 𝑀) / 𝑗⦌((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘⦋(𝑖 − 𝑀) / 𝑗⦌𝑗)) |
74 | 70 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 − 𝑀) ∈ V → ((𝑈 substr 〈𝑀, 𝑁〉)‘⦋(𝑖 − 𝑀) / 𝑗⦌𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀))) |
75 | 73, 74 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝑖 − 𝑀) ∈ V → ⦋(𝑖 − 𝑀) / 𝑗⦌((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀))) |
76 | 72, 75 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ ((𝑖 − 𝑀) ∈ V → (⦋(𝑖 − 𝑀) / 𝑗⦌((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ⦋(𝑖 − 𝑀) / 𝑗⦌((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) = ((𝑈 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)))) |
77 | 68, 76 | bitrd 278 |
. . . . . . . . . . 11
⊢ ((𝑖 − 𝑀) ∈ V → ([(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) = ((𝑈 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)))) |
78 | 67, 77 | mp1i 13 |
. . . . . . . . . 10
⊢
(((((𝑊 ∈ Word
𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ([(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) = ((𝑈 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)))) |
79 | 33, 42, 43 | 3jca 1126 |
. . . . . . . . . . . 12
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈
(ℤ≥‘𝑀)) ∧ 𝑁 ≤ (♯‘𝑊))) |
80 | | swrdfv2 14302 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈
(ℤ≥‘𝑀)) ∧ 𝑁 ≤ (♯‘𝑊)) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) = (𝑊‘𝑖)) |
81 | 79, 80 | sylan 579 |
. . . . . . . . . . 11
⊢
(((((𝑊 ∈ Word
𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) = (𝑊‘𝑖)) |
82 | | simpl1r 1223 |
. . . . . . . . . . . . 13
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → 𝑈 ∈ Word 𝑉) |
83 | | simpl3r 1227 |
. . . . . . . . . . . . 13
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → 𝑁 ≤ (♯‘𝑈)) |
84 | 82, 42, 83 | 3jca 1126 |
. . . . . . . . . . . 12
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (𝑈 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈
(ℤ≥‘𝑀)) ∧ 𝑁 ≤ (♯‘𝑈))) |
85 | | swrdfv2 14302 |
. . . . . . . . . . . 12
⊢ (((𝑈 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈
(ℤ≥‘𝑀)) ∧ 𝑁 ≤ (♯‘𝑈)) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑈 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) = (𝑈‘𝑖)) |
86 | 84, 85 | sylan 579 |
. . . . . . . . . . 11
⊢
(((((𝑊 ∈ Word
𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑈 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) = (𝑈‘𝑖)) |
87 | 81, 86 | eqeq12d 2754 |
. . . . . . . . . 10
⊢
(((((𝑊 ∈ Word
𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → (((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) = ((𝑈 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) ↔ (𝑊‘𝑖) = (𝑈‘𝑖))) |
88 | 78, 87 | bitrd 278 |
. . . . . . . . 9
⊢
(((((𝑊 ∈ Word
𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ([(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ (𝑊‘𝑖) = (𝑈‘𝑖))) |
89 | 88 | ralbidva 3119 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (∀𝑖 ∈ (𝑀..^𝑁)[(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
90 | 66, 89 | bitrd 278 |
. . . . . . 7
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (∀𝑖 ∈ ((0 + 𝑀)..^((𝑁 − 𝑀) + 𝑀))[(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
91 | 47, 56, 90 | 3bitrd 304 |
. . . . . 6
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (∀𝑗 ∈ (0..^(♯‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
92 | 91 | ex 412 |
. . . . 5
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → (𝑀 ≤ 𝑁 → (∀𝑗 ∈ (0..^(♯‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖)))) |
93 | 32, 92 | syld 47 |
. . . 4
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → (¬ 𝑁 ≤ 𝑀 → (∀𝑗 ∈ (0..^(♯‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖)))) |
94 | 93 | impcom 407 |
. . 3
⊢ ((¬
𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈)))) → (∀𝑗 ∈
(0..^(♯‘(𝑊
substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
95 | 22, 25, 94 | 3bitr2d 306 |
. 2
⊢ ((¬
𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈)))) → ((𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
96 | 16, 95 | pm2.61ian 808 |
1
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → ((𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |