MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdspsleq Structured version   Visualization version   GIF version

Theorem swrdspsleq 14553
Description: Two words have a common subword (starting at the same position with the same length) iff they have the same symbols at each position. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Proof shortened by AV, 7-May-2020.)
Assertion
Ref Expression
swrdspsleq (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
Distinct variable groups:   𝑖,𝑀   𝑖,𝑁   𝑈,𝑖   𝑖,𝑉   𝑖,𝑊

Proof of Theorem swrdspsleq
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 swrdsb0eq 14551 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝑀) → (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩))
213expa 1118 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ 𝑁𝑀) → (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩))
32ancoms 459 . . . 4 ((𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩))
433adantr3 1171 . . 3 ((𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)))) → (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩))
5 ral0 4470 . . . . . . 7 𝑖 ∈ ∅ (𝑊𝑖) = (𝑈𝑖)
6 nn0z 12524 . . . . . . . . . 10 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
7 nn0z 12524 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
8 fzon 13593 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝑀 ↔ (𝑀..^𝑁) = ∅))
96, 7, 8syl2an 596 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑀 ↔ (𝑀..^𝑁) = ∅))
109biimpa 477 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝑀) → (𝑀..^𝑁) = ∅)
1110raleqdv 3313 . . . . . . 7 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝑀) → (∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖) ↔ ∀𝑖 ∈ ∅ (𝑊𝑖) = (𝑈𝑖)))
125, 11mpbiri 257 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝑀) → ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖))
1312ex 413 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑀 → ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
14133ad2ant2 1134 . . . 4 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑁𝑀 → ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
1514impcom 408 . . 3 ((𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)))) → ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖))
164, 152thd 264 . 2 ((𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
17 swrdcl 14533 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
18 swrdcl 14533 . . . . . 6 (𝑈 ∈ Word 𝑉 → (𝑈 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
19 eqwrd 14445 . . . . . 6 (((𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉 ∧ (𝑈 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ((♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (♯‘(𝑈 substr ⟨𝑀, 𝑁⟩)) ∧ ∀𝑗 ∈ (0..^(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗))))
2017, 18, 19syl2an 596 . . . . 5 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ((♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (♯‘(𝑈 substr ⟨𝑀, 𝑁⟩)) ∧ ∀𝑗 ∈ (0..^(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗))))
21203ad2ant1 1133 . . . 4 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ((♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (♯‘(𝑈 substr ⟨𝑀, 𝑁⟩)) ∧ ∀𝑗 ∈ (0..^(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗))))
2221adantl 482 . . 3 ((¬ 𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ((♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (♯‘(𝑈 substr ⟨𝑀, 𝑁⟩)) ∧ ∀𝑗 ∈ (0..^(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗))))
23 swrdsbslen 14552 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (♯‘(𝑈 substr ⟨𝑀, 𝑁⟩)))
2423adantl 482 . . . 4 ((¬ 𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)))) → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (♯‘(𝑈 substr ⟨𝑀, 𝑁⟩)))
2524biantrurd 533 . . 3 ((¬ 𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)))) → (∀𝑗 ∈ (0..^(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ((♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (♯‘(𝑈 substr ⟨𝑀, 𝑁⟩)) ∧ ∀𝑗 ∈ (0..^(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗))))
26 nn0re 12422 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
27 nn0re 12422 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
28 ltnle 11234 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 ↔ ¬ 𝑁𝑀))
29 ltle 11243 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁𝑀𝑁))
3028, 29sylbird 259 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (¬ 𝑁𝑀𝑀𝑁))
3126, 27, 30syl2an 596 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁𝑀𝑀𝑁))
32313ad2ant2 1134 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (¬ 𝑁𝑀𝑀𝑁))
33 simpl1l 1224 . . . . . . . . . 10 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → 𝑊 ∈ Word 𝑉)
34 simpl2l 1226 . . . . . . . . . . 11 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → 𝑀 ∈ ℕ0)
356, 7anim12i 613 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
36353ad2ant2 1134 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
3736anim1i 615 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁))
38 df-3an 1089 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁))
3937, 38sylibr 233 . . . . . . . . . . . 12 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
40 eluz2 12769 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
4139, 40sylibr 233 . . . . . . . . . . 11 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → 𝑁 ∈ (ℤ𝑀))
4234, 41jca 512 . . . . . . . . . 10 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)))
43 simpl3l 1228 . . . . . . . . . 10 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → 𝑁 ≤ (♯‘𝑊))
44 swrdlen2 14548 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ 𝑁 ≤ (♯‘𝑊)) → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (𝑁𝑀))
4533, 42, 43, 44syl3anc 1371 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (𝑁𝑀))
4645oveq2d 7373 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (0..^(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩))) = (0..^(𝑁𝑀)))
4746raleqdv 3313 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (∀𝑗 ∈ (0..^(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑗 ∈ (0..^(𝑁𝑀))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗)))
48 0zd 12511 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 0 ∈ ℤ)
49 zsubcl 12545 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀) ∈ ℤ)
507, 6, 49syl2anr 597 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑀) ∈ ℤ)
51503ad2ant2 1134 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑁𝑀) ∈ ℤ)
526adantr 481 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℤ)
53523ad2ant2 1134 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑀 ∈ ℤ)
54 fzoshftral 13689 . . . . . . . . 9 ((0 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (∀𝑗 ∈ (0..^(𝑁𝑀))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ ((0 + 𝑀)..^((𝑁𝑀) + 𝑀))[(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗)))
5548, 51, 53, 54syl3anc 1371 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (∀𝑗 ∈ (0..^(𝑁𝑀))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ ((0 + 𝑀)..^((𝑁𝑀) + 𝑀))[(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗)))
5655adantr 481 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (∀𝑗 ∈ (0..^(𝑁𝑀))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ ((0 + 𝑀)..^((𝑁𝑀) + 𝑀))[(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗)))
57 nn0cn 12423 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
58 nn0cn 12423 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
59 addid2 11338 . . . . . . . . . . . . . 14 (𝑀 ∈ ℂ → (0 + 𝑀) = 𝑀)
6059adantl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (0 + 𝑀) = 𝑀)
61 npcan 11410 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁𝑀) + 𝑀) = 𝑁)
6260, 61oveq12d 7375 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((0 + 𝑀)..^((𝑁𝑀) + 𝑀)) = (𝑀..^𝑁))
6357, 58, 62syl2anr 597 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((0 + 𝑀)..^((𝑁𝑀) + 𝑀)) = (𝑀..^𝑁))
64633ad2ant2 1134 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((0 + 𝑀)..^((𝑁𝑀) + 𝑀)) = (𝑀..^𝑁))
6564adantr 481 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → ((0 + 𝑀)..^((𝑁𝑀) + 𝑀)) = (𝑀..^𝑁))
6665raleqdv 3313 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (∀𝑖 ∈ ((0 + 𝑀)..^((𝑁𝑀) + 𝑀))[(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)[(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗)))
67 ovex 7390 . . . . . . . . . . 11 (𝑖𝑀) ∈ V
68 sbceqg 4369 . . . . . . . . . . . 12 ((𝑖𝑀) ∈ V → ([(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ (𝑖𝑀) / 𝑗((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = (𝑖𝑀) / 𝑗((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗)))
69 csbfv2g 6891 . . . . . . . . . . . . . 14 ((𝑖𝑀) ∈ V → (𝑖𝑀) / 𝑗((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀) / 𝑗𝑗))
70 csbvarg 4391 . . . . . . . . . . . . . . 15 ((𝑖𝑀) ∈ V → (𝑖𝑀) / 𝑗𝑗 = (𝑖𝑀))
7170fveq2d 6846 . . . . . . . . . . . . . 14 ((𝑖𝑀) ∈ V → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀) / 𝑗𝑗) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)))
7269, 71eqtrd 2776 . . . . . . . . . . . . 13 ((𝑖𝑀) ∈ V → (𝑖𝑀) / 𝑗((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)))
73 csbfv2g 6891 . . . . . . . . . . . . . 14 ((𝑖𝑀) ∈ V → (𝑖𝑀) / 𝑗((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀) / 𝑗𝑗))
7470fveq2d 6846 . . . . . . . . . . . . . 14 ((𝑖𝑀) ∈ V → ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀) / 𝑗𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)))
7573, 74eqtrd 2776 . . . . . . . . . . . . 13 ((𝑖𝑀) ∈ V → (𝑖𝑀) / 𝑗((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)))
7672, 75eqeq12d 2752 . . . . . . . . . . . 12 ((𝑖𝑀) ∈ V → ((𝑖𝑀) / 𝑗((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = (𝑖𝑀) / 𝑗((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀))))
7768, 76bitrd 278 . . . . . . . . . . 11 ((𝑖𝑀) ∈ V → ([(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀))))
7867, 77mp1i 13 . . . . . . . . . 10 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ([(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀))))
7933, 42, 433jca 1128 . . . . . . . . . . . 12 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ 𝑁 ≤ (♯‘𝑊)))
80 swrdfv2 14549 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ 𝑁 ≤ (♯‘𝑊)) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) = (𝑊𝑖))
8179, 80sylan 580 . . . . . . . . . . 11 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) = (𝑊𝑖))
82 simpl1r 1225 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → 𝑈 ∈ Word 𝑉)
83 simpl3r 1229 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → 𝑁 ≤ (♯‘𝑈))
8482, 42, 833jca 1128 . . . . . . . . . . . 12 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (𝑈 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ 𝑁 ≤ (♯‘𝑈)))
85 swrdfv2 14549 . . . . . . . . . . . 12 (((𝑈 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ 𝑁 ≤ (♯‘𝑈)) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) = (𝑈𝑖))
8684, 85sylan 580 . . . . . . . . . . 11 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) = (𝑈𝑖))
8781, 86eqeq12d 2752 . . . . . . . . . 10 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → (((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) ↔ (𝑊𝑖) = (𝑈𝑖)))
8878, 87bitrd 278 . . . . . . . . 9 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ([(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ (𝑊𝑖) = (𝑈𝑖)))
8988ralbidva 3172 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (∀𝑖 ∈ (𝑀..^𝑁)[(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
9066, 89bitrd 278 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (∀𝑖 ∈ ((0 + 𝑀)..^((𝑁𝑀) + 𝑀))[(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
9147, 56, 903bitrd 304 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (∀𝑗 ∈ (0..^(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
9291ex 413 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑀𝑁 → (∀𝑗 ∈ (0..^(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖))))
9332, 92syld 47 . . . 4 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (¬ 𝑁𝑀 → (∀𝑗 ∈ (0..^(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖))))
9493impcom 408 . . 3 ((¬ 𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)))) → (∀𝑗 ∈ (0..^(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
9522, 25, 943bitr2d 306 . 2 ((¬ 𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
9616, 95pm2.61ian 810 1 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  [wsbc 3739  csb 3855  c0 4282  cop 4592   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051   + caddc 11054   < clt 11189  cle 11190  cmin 11385  0cn0 12413  cz 12499  cuz 12763  ..^cfzo 13567  chash 14230  Word cword 14402   substr csubstr 14528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-substr 14529
This theorem is referenced by:  pfxsuffeqwrdeq  14586  clwwlkf1  28993
  Copyright terms: Public domain W3C validator