Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmscbv Structured version   Visualization version   GIF version

Theorem cvmscbv 32933
Description: Change bound variables in the set of even coverings. (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypothesis
Ref Expression
iscvm.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
Assertion
Ref Expression
cvmscbv 𝑆 = (𝑎𝐽 ↦ {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑏 = (𝐹𝑎) ∧ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑎))))})
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑,𝑘,𝑠,𝑢,𝑣   𝐶,𝑎,𝑏,𝑐,𝑘,𝑠,𝑢   𝐹,𝑎,𝑏,𝑐,𝑘,𝑠,𝑢   𝐽,𝑎,𝑏,𝑐,𝑘,𝑠,𝑢
Allowed substitution hints:   𝐶(𝑣,𝑑)   𝑆(𝑣,𝑢,𝑘,𝑠,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑣,𝑑)   𝐽(𝑣,𝑑)

Proof of Theorem cvmscbv
StepHypRef Expression
1 iscvm.1 . 2 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
2 unieq 4830 . . . . . . 7 (𝑠 = 𝑏 𝑠 = 𝑏)
32eqeq1d 2739 . . . . . 6 (𝑠 = 𝑏 → ( 𝑠 = (𝐹𝑘) ↔ 𝑏 = (𝐹𝑘)))
4 ineq2 4121 . . . . . . . . . . . 12 (𝑣 = 𝑑 → (𝑢𝑣) = (𝑢𝑑))
54eqeq1d 2739 . . . . . . . . . . 11 (𝑣 = 𝑑 → ((𝑢𝑣) = ∅ ↔ (𝑢𝑑) = ∅))
65cbvralvw 3358 . . . . . . . . . 10 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ↔ ∀𝑑 ∈ (𝑠 ∖ {𝑢})(𝑢𝑑) = ∅)
7 sneq 4551 . . . . . . . . . . . 12 (𝑢 = 𝑐 → {𝑢} = {𝑐})
87difeq2d 4037 . . . . . . . . . . 11 (𝑢 = 𝑐 → (𝑠 ∖ {𝑢}) = (𝑠 ∖ {𝑐}))
9 ineq1 4120 . . . . . . . . . . . 12 (𝑢 = 𝑐 → (𝑢𝑑) = (𝑐𝑑))
109eqeq1d 2739 . . . . . . . . . . 11 (𝑢 = 𝑐 → ((𝑢𝑑) = ∅ ↔ (𝑐𝑑) = ∅))
118, 10raleqbidv 3313 . . . . . . . . . 10 (𝑢 = 𝑐 → (∀𝑑 ∈ (𝑠 ∖ {𝑢})(𝑢𝑑) = ∅ ↔ ∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅))
126, 11syl5bb 286 . . . . . . . . 9 (𝑢 = 𝑐 → (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ↔ ∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅))
13 reseq2 5846 . . . . . . . . . 10 (𝑢 = 𝑐 → (𝐹𝑢) = (𝐹𝑐))
14 oveq2 7221 . . . . . . . . . . 11 (𝑢 = 𝑐 → (𝐶t 𝑢) = (𝐶t 𝑐))
1514oveq1d 7228 . . . . . . . . . 10 (𝑢 = 𝑐 → ((𝐶t 𝑢)Homeo(𝐽t 𝑘)) = ((𝐶t 𝑐)Homeo(𝐽t 𝑘)))
1613, 15eleq12d 2832 . . . . . . . . 9 (𝑢 = 𝑐 → ((𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)) ↔ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))
1712, 16anbi12d 634 . . . . . . . 8 (𝑢 = 𝑐 → ((∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))) ↔ (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘)))))
1817cbvralvw 3358 . . . . . . 7 (∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))) ↔ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))
19 difeq1 4030 . . . . . . . . . 10 (𝑠 = 𝑏 → (𝑠 ∖ {𝑐}) = (𝑏 ∖ {𝑐}))
2019raleqdv 3325 . . . . . . . . 9 (𝑠 = 𝑏 → (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ↔ ∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅))
2120anbi1d 633 . . . . . . . 8 (𝑠 = 𝑏 → ((∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))) ↔ (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘)))))
2221raleqbi1dv 3317 . . . . . . 7 (𝑠 = 𝑏 → (∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))) ↔ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘)))))
2318, 22syl5bb 286 . . . . . 6 (𝑠 = 𝑏 → (∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))) ↔ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘)))))
243, 23anbi12d 634 . . . . 5 (𝑠 = 𝑏 → (( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))) ↔ ( 𝑏 = (𝐹𝑘) ∧ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))))
2524cbvrabv 3402 . . . 4 {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))} = {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑏 = (𝐹𝑘) ∧ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))}
26 imaeq2 5925 . . . . . . 7 (𝑘 = 𝑎 → (𝐹𝑘) = (𝐹𝑎))
2726eqeq2d 2748 . . . . . 6 (𝑘 = 𝑎 → ( 𝑏 = (𝐹𝑘) ↔ 𝑏 = (𝐹𝑎)))
28 oveq2 7221 . . . . . . . . . 10 (𝑘 = 𝑎 → (𝐽t 𝑘) = (𝐽t 𝑎))
2928oveq2d 7229 . . . . . . . . 9 (𝑘 = 𝑎 → ((𝐶t 𝑐)Homeo(𝐽t 𝑘)) = ((𝐶t 𝑐)Homeo(𝐽t 𝑎)))
3029eleq2d 2823 . . . . . . . 8 (𝑘 = 𝑎 → ((𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘)) ↔ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑎))))
3130anbi2d 632 . . . . . . 7 (𝑘 = 𝑎 → ((∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))) ↔ (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑎)))))
3231ralbidv 3118 . . . . . 6 (𝑘 = 𝑎 → (∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))) ↔ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑎)))))
3327, 32anbi12d 634 . . . . 5 (𝑘 = 𝑎 → (( 𝑏 = (𝐹𝑘) ∧ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘)))) ↔ ( 𝑏 = (𝐹𝑎) ∧ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑎))))))
3433rabbidv 3390 . . . 4 (𝑘 = 𝑎 → {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑏 = (𝐹𝑘) ∧ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))} = {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑏 = (𝐹𝑎) ∧ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑎))))})
3525, 34syl5eq 2790 . . 3 (𝑘 = 𝑎 → {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))} = {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑏 = (𝐹𝑎) ∧ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑎))))})
3635cbvmptv 5158 . 2 (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))}) = (𝑎𝐽 ↦ {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑏 = (𝐹𝑎) ∧ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑎))))})
371, 36eqtri 2765 1 𝑆 = (𝑎𝐽 ↦ {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑏 = (𝐹𝑎) ∧ ∀𝑐𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑎))))})
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1543  wcel 2110  wral 3061  {crab 3065  cdif 3863  cin 3865  c0 4237  𝒫 cpw 4513  {csn 4541   cuni 4819  cmpt 5135  ccnv 5550  cres 5553  cima 5554  (class class class)co 7213  t crest 16925  Homeochmeo 22650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-xp 5557  df-cnv 5559  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fv 6388  df-ov 7216
This theorem is referenced by:  cvmsss2  32949  cvmliftmoi  32958  cvmlift  32974  cvmfo  32975  cvmlift3  33003
  Copyright terms: Public domain W3C validator