Proof of Theorem cvmscbv
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | iscvm.1 | . 2
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | 
| 2 |  | unieq 4918 | . . . . . . 7
⊢ (𝑠 = 𝑏 → ∪ 𝑠 = ∪
𝑏) | 
| 3 | 2 | eqeq1d 2739 | . . . . . 6
⊢ (𝑠 = 𝑏 → (∪ 𝑠 = (◡𝐹 “ 𝑘) ↔ ∪ 𝑏 = (◡𝐹 “ 𝑘))) | 
| 4 |  | ineq2 4214 | . . . . . . . . . . . 12
⊢ (𝑣 = 𝑑 → (𝑢 ∩ 𝑣) = (𝑢 ∩ 𝑑)) | 
| 5 | 4 | eqeq1d 2739 | . . . . . . . . . . 11
⊢ (𝑣 = 𝑑 → ((𝑢 ∩ 𝑣) = ∅ ↔ (𝑢 ∩ 𝑑) = ∅)) | 
| 6 | 5 | cbvralvw 3237 | . . . . . . . . . 10
⊢
(∀𝑣 ∈
(𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ↔ ∀𝑑 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑑) = ∅) | 
| 7 |  | sneq 4636 | . . . . . . . . . . . 12
⊢ (𝑢 = 𝑐 → {𝑢} = {𝑐}) | 
| 8 | 7 | difeq2d 4126 | . . . . . . . . . . 11
⊢ (𝑢 = 𝑐 → (𝑠 ∖ {𝑢}) = (𝑠 ∖ {𝑐})) | 
| 9 |  | ineq1 4213 | . . . . . . . . . . . 12
⊢ (𝑢 = 𝑐 → (𝑢 ∩ 𝑑) = (𝑐 ∩ 𝑑)) | 
| 10 | 9 | eqeq1d 2739 | . . . . . . . . . . 11
⊢ (𝑢 = 𝑐 → ((𝑢 ∩ 𝑑) = ∅ ↔ (𝑐 ∩ 𝑑) = ∅)) | 
| 11 | 8, 10 | raleqbidv 3346 | . . . . . . . . . 10
⊢ (𝑢 = 𝑐 → (∀𝑑 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑑) = ∅ ↔ ∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅)) | 
| 12 | 6, 11 | bitrid 283 | . . . . . . . . 9
⊢ (𝑢 = 𝑐 → (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ↔ ∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅)) | 
| 13 |  | reseq2 5992 | . . . . . . . . . 10
⊢ (𝑢 = 𝑐 → (𝐹 ↾ 𝑢) = (𝐹 ↾ 𝑐)) | 
| 14 |  | oveq2 7439 | . . . . . . . . . . 11
⊢ (𝑢 = 𝑐 → (𝐶 ↾t 𝑢) = (𝐶 ↾t 𝑐)) | 
| 15 | 14 | oveq1d 7446 | . . . . . . . . . 10
⊢ (𝑢 = 𝑐 → ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘)) = ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))) | 
| 16 | 13, 15 | eleq12d 2835 | . . . . . . . . 9
⊢ (𝑢 = 𝑐 → ((𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘)) ↔ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘)))) | 
| 17 | 12, 16 | anbi12d 632 | . . . . . . . 8
⊢ (𝑢 = 𝑐 → ((∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))) ↔ (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))) | 
| 18 | 17 | cbvralvw 3237 | . . . . . . 7
⊢
(∀𝑢 ∈
𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))) ↔ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘)))) | 
| 19 |  | difeq1 4119 | . . . . . . . . . 10
⊢ (𝑠 = 𝑏 → (𝑠 ∖ {𝑐}) = (𝑏 ∖ {𝑐})) | 
| 20 | 19 | raleqdv 3326 | . . . . . . . . 9
⊢ (𝑠 = 𝑏 → (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ↔ ∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅)) | 
| 21 | 20 | anbi1d 631 | . . . . . . . 8
⊢ (𝑠 = 𝑏 → ((∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))) ↔ (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))) | 
| 22 | 21 | raleqbi1dv 3338 | . . . . . . 7
⊢ (𝑠 = 𝑏 → (∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))) ↔ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))) | 
| 23 | 18, 22 | bitrid 283 | . . . . . 6
⊢ (𝑠 = 𝑏 → (∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))) ↔ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))) | 
| 24 | 3, 23 | anbi12d 632 | . . . . 5
⊢ (𝑠 = 𝑏 → ((∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘)))) ↔ (∪
𝑏 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘)))))) | 
| 25 | 24 | cbvrabv 3447 | . . . 4
⊢ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣
(∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))} = {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑏 =
(◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))} | 
| 26 |  | imaeq2 6074 | . . . . . . 7
⊢ (𝑘 = 𝑎 → (◡𝐹 “ 𝑘) = (◡𝐹 “ 𝑎)) | 
| 27 | 26 | eqeq2d 2748 | . . . . . 6
⊢ (𝑘 = 𝑎 → (∪ 𝑏 = (◡𝐹 “ 𝑘) ↔ ∪ 𝑏 = (◡𝐹 “ 𝑎))) | 
| 28 |  | oveq2 7439 | . . . . . . . . . 10
⊢ (𝑘 = 𝑎 → (𝐽 ↾t 𝑘) = (𝐽 ↾t 𝑎)) | 
| 29 | 28 | oveq2d 7447 | . . . . . . . . 9
⊢ (𝑘 = 𝑎 → ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘)) = ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑎))) | 
| 30 | 29 | eleq2d 2827 | . . . . . . . 8
⊢ (𝑘 = 𝑎 → ((𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘)) ↔ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑎)))) | 
| 31 | 30 | anbi2d 630 | . . . . . . 7
⊢ (𝑘 = 𝑎 → ((∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))) ↔ (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑎))))) | 
| 32 | 31 | ralbidv 3178 | . . . . . 6
⊢ (𝑘 = 𝑎 → (∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))) ↔ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑎))))) | 
| 33 | 27, 32 | anbi12d 632 | . . . . 5
⊢ (𝑘 = 𝑎 → ((∪ 𝑏 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘)))) ↔ (∪
𝑏 = (◡𝐹 “ 𝑎) ∧ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑎)))))) | 
| 34 | 33 | rabbidv 3444 | . . . 4
⊢ (𝑘 = 𝑎 → {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑏 =
(◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))} = {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑏 =
(◡𝐹 “ 𝑎) ∧ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑎))))}) | 
| 35 | 25, 34 | eqtrid 2789 | . . 3
⊢ (𝑘 = 𝑎 → {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))} = {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑏 =
(◡𝐹 “ 𝑎) ∧ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑎))))}) | 
| 36 | 35 | cbvmptv 5255 | . 2
⊢ (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) = (𝑎 ∈ 𝐽 ↦ {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑏 =
(◡𝐹 “ 𝑎) ∧ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑎))))}) | 
| 37 | 1, 36 | eqtri 2765 | 1
⊢ 𝑆 = (𝑎 ∈ 𝐽 ↦ {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑏 =
(◡𝐹 “ 𝑎) ∧ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑎))))}) |