Proof of Theorem cvmscbv
Step | Hyp | Ref
| Expression |
1 | | iscvm.1 |
. 2
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
2 | | unieq 4830 |
. . . . . . 7
⊢ (𝑠 = 𝑏 → ∪ 𝑠 = ∪
𝑏) |
3 | 2 | eqeq1d 2739 |
. . . . . 6
⊢ (𝑠 = 𝑏 → (∪ 𝑠 = (◡𝐹 “ 𝑘) ↔ ∪ 𝑏 = (◡𝐹 “ 𝑘))) |
4 | | ineq2 4121 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑑 → (𝑢 ∩ 𝑣) = (𝑢 ∩ 𝑑)) |
5 | 4 | eqeq1d 2739 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑑 → ((𝑢 ∩ 𝑣) = ∅ ↔ (𝑢 ∩ 𝑑) = ∅)) |
6 | 5 | cbvralvw 3358 |
. . . . . . . . . 10
⊢
(∀𝑣 ∈
(𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ↔ ∀𝑑 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑑) = ∅) |
7 | | sneq 4551 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑐 → {𝑢} = {𝑐}) |
8 | 7 | difeq2d 4037 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑐 → (𝑠 ∖ {𝑢}) = (𝑠 ∖ {𝑐})) |
9 | | ineq1 4120 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑐 → (𝑢 ∩ 𝑑) = (𝑐 ∩ 𝑑)) |
10 | 9 | eqeq1d 2739 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑐 → ((𝑢 ∩ 𝑑) = ∅ ↔ (𝑐 ∩ 𝑑) = ∅)) |
11 | 8, 10 | raleqbidv 3313 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑐 → (∀𝑑 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑑) = ∅ ↔ ∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅)) |
12 | 6, 11 | syl5bb 286 |
. . . . . . . . 9
⊢ (𝑢 = 𝑐 → (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ↔ ∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅)) |
13 | | reseq2 5846 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑐 → (𝐹 ↾ 𝑢) = (𝐹 ↾ 𝑐)) |
14 | | oveq2 7221 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑐 → (𝐶 ↾t 𝑢) = (𝐶 ↾t 𝑐)) |
15 | 14 | oveq1d 7228 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑐 → ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘)) = ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))) |
16 | 13, 15 | eleq12d 2832 |
. . . . . . . . 9
⊢ (𝑢 = 𝑐 → ((𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘)) ↔ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘)))) |
17 | 12, 16 | anbi12d 634 |
. . . . . . . 8
⊢ (𝑢 = 𝑐 → ((∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))) ↔ (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))) |
18 | 17 | cbvralvw 3358 |
. . . . . . 7
⊢
(∀𝑢 ∈
𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))) ↔ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘)))) |
19 | | difeq1 4030 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑏 → (𝑠 ∖ {𝑐}) = (𝑏 ∖ {𝑐})) |
20 | 19 | raleqdv 3325 |
. . . . . . . . 9
⊢ (𝑠 = 𝑏 → (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ↔ ∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅)) |
21 | 20 | anbi1d 633 |
. . . . . . . 8
⊢ (𝑠 = 𝑏 → ((∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))) ↔ (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))) |
22 | 21 | raleqbi1dv 3317 |
. . . . . . 7
⊢ (𝑠 = 𝑏 → (∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))) ↔ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))) |
23 | 18, 22 | syl5bb 286 |
. . . . . 6
⊢ (𝑠 = 𝑏 → (∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))) ↔ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))) |
24 | 3, 23 | anbi12d 634 |
. . . . 5
⊢ (𝑠 = 𝑏 → ((∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘)))) ↔ (∪
𝑏 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘)))))) |
25 | 24 | cbvrabv 3402 |
. . . 4
⊢ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣
(∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))} = {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑏 =
(◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))} |
26 | | imaeq2 5925 |
. . . . . . 7
⊢ (𝑘 = 𝑎 → (◡𝐹 “ 𝑘) = (◡𝐹 “ 𝑎)) |
27 | 26 | eqeq2d 2748 |
. . . . . 6
⊢ (𝑘 = 𝑎 → (∪ 𝑏 = (◡𝐹 “ 𝑘) ↔ ∪ 𝑏 = (◡𝐹 “ 𝑎))) |
28 | | oveq2 7221 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑎 → (𝐽 ↾t 𝑘) = (𝐽 ↾t 𝑎)) |
29 | 28 | oveq2d 7229 |
. . . . . . . . 9
⊢ (𝑘 = 𝑎 → ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘)) = ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑎))) |
30 | 29 | eleq2d 2823 |
. . . . . . . 8
⊢ (𝑘 = 𝑎 → ((𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘)) ↔ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑎)))) |
31 | 30 | anbi2d 632 |
. . . . . . 7
⊢ (𝑘 = 𝑎 → ((∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))) ↔ (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑎))))) |
32 | 31 | ralbidv 3118 |
. . . . . 6
⊢ (𝑘 = 𝑎 → (∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))) ↔ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑎))))) |
33 | 27, 32 | anbi12d 634 |
. . . . 5
⊢ (𝑘 = 𝑎 → ((∪ 𝑏 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘)))) ↔ (∪
𝑏 = (◡𝐹 “ 𝑎) ∧ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑎)))))) |
34 | 33 | rabbidv 3390 |
. . . 4
⊢ (𝑘 = 𝑎 → {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑏 =
(◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))} = {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑏 =
(◡𝐹 “ 𝑎) ∧ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑎))))}) |
35 | 25, 34 | syl5eq 2790 |
. . 3
⊢ (𝑘 = 𝑎 → {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))} = {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑏 =
(◡𝐹 “ 𝑎) ∧ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑎))))}) |
36 | 35 | cbvmptv 5158 |
. 2
⊢ (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) = (𝑎 ∈ 𝐽 ↦ {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑏 =
(◡𝐹 “ 𝑎) ∧ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑎))))}) |
37 | 1, 36 | eqtri 2765 |
1
⊢ 𝑆 = (𝑎 ∈ 𝐽 ↦ {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑏 =
(◡𝐹 “ 𝑎) ∧ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑎))))}) |