| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftmoi | Structured version Visualization version GIF version | ||
| Description: A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| cvmliftmo.b | ⊢ 𝐵 = ∪ 𝐶 |
| cvmliftmo.y | ⊢ 𝑌 = ∪ 𝐾 |
| cvmliftmo.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| cvmliftmo.k | ⊢ (𝜑 → 𝐾 ∈ Conn) |
| cvmliftmo.l | ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Conn) |
| cvmliftmo.o | ⊢ (𝜑 → 𝑂 ∈ 𝑌) |
| cvmliftmoi.m | ⊢ (𝜑 → 𝑀 ∈ (𝐾 Cn 𝐶)) |
| cvmliftmoi.n | ⊢ (𝜑 → 𝑁 ∈ (𝐾 Cn 𝐶)) |
| cvmliftmoi.g | ⊢ (𝜑 → (𝐹 ∘ 𝑀) = (𝐹 ∘ 𝑁)) |
| cvmliftmoi.p | ⊢ (𝜑 → (𝑀‘𝑂) = (𝑁‘𝑂)) |
| Ref | Expression |
|---|---|
| cvmliftmoi | ⊢ (𝜑 → 𝑀 = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvmliftmo.b | . 2 ⊢ 𝐵 = ∪ 𝐶 | |
| 2 | cvmliftmo.y | . 2 ⊢ 𝑌 = ∪ 𝐾 | |
| 3 | cvmliftmo.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | |
| 4 | cvmliftmo.k | . 2 ⊢ (𝜑 → 𝐾 ∈ Conn) | |
| 5 | cvmliftmo.l | . 2 ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Conn) | |
| 6 | cvmliftmo.o | . 2 ⊢ (𝜑 → 𝑂 ∈ 𝑌) | |
| 7 | cvmliftmoi.m | . 2 ⊢ (𝜑 → 𝑀 ∈ (𝐾 Cn 𝐶)) | |
| 8 | cvmliftmoi.n | . 2 ⊢ (𝜑 → 𝑁 ∈ (𝐾 Cn 𝐶)) | |
| 9 | cvmliftmoi.g | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝑀) = (𝐹 ∘ 𝑁)) | |
| 10 | cvmliftmoi.p | . 2 ⊢ (𝜑 → (𝑀‘𝑂) = (𝑁‘𝑂)) | |
| 11 | eqid 2736 | . . 3 ⊢ (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
| 12 | 11 | cvmscbv 35285 | . 2 ⊢ (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) = (𝑏 ∈ 𝐽 ↦ {𝑚 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑚 = (◡𝐹 “ 𝑏) ∧ ∀𝑟 ∈ 𝑚 (∀𝑤 ∈ (𝑚 ∖ {𝑟})(𝑟 ∩ 𝑤) = ∅ ∧ (𝐹 ↾ 𝑟) ∈ ((𝐶 ↾t 𝑟)Homeo(𝐽 ↾t 𝑏))))}) |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 | cvmliftmolem2 35309 | 1 ⊢ (𝜑 → 𝑀 = 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {crab 3420 ∖ cdif 3928 ∩ cin 3930 ∅c0 4313 𝒫 cpw 4580 {csn 4606 ∪ cuni 4888 ↦ cmpt 5206 ◡ccnv 5658 ↾ cres 5661 “ cima 5662 ∘ ccom 5663 ‘cfv 6536 (class class class)co 7410 ↾t crest 17439 Cn ccn 23167 Conncconn 23354 𝑛-Locally cnlly 23408 Homeochmeo 23696 CovMap ccvm 35282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-map 8847 df-en 8965 df-fin 8968 df-fi 9428 df-rest 17441 df-topgen 17462 df-top 22837 df-topon 22854 df-bases 22889 df-cld 22962 df-nei 23041 df-cn 23170 df-conn 23355 df-nlly 23410 df-hmeo 23698 df-cvm 35283 |
| This theorem is referenced by: cvmliftmo 35311 cvmliftphtlem 35344 |
| Copyright terms: Public domain | W3C validator |