Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftmoi Structured version   Visualization version   GIF version

Theorem cvmliftmoi 35348
Description: A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
cvmliftmo.b 𝐵 = 𝐶
cvmliftmo.y 𝑌 = 𝐾
cvmliftmo.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftmo.k (𝜑𝐾 ∈ Conn)
cvmliftmo.l (𝜑𝐾 ∈ 𝑛-Locally Conn)
cvmliftmo.o (𝜑𝑂𝑌)
cvmliftmoi.m (𝜑𝑀 ∈ (𝐾 Cn 𝐶))
cvmliftmoi.n (𝜑𝑁 ∈ (𝐾 Cn 𝐶))
cvmliftmoi.g (𝜑 → (𝐹𝑀) = (𝐹𝑁))
cvmliftmoi.p (𝜑 → (𝑀𝑂) = (𝑁𝑂))
Assertion
Ref Expression
cvmliftmoi (𝜑𝑀 = 𝑁)

Proof of Theorem cvmliftmoi
Dummy variables 𝑏 𝑘 𝑚 𝑟 𝑠 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmliftmo.b . 2 𝐵 = 𝐶
2 cvmliftmo.y . 2 𝑌 = 𝐾
3 cvmliftmo.f . 2 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmliftmo.k . 2 (𝜑𝐾 ∈ Conn)
5 cvmliftmo.l . 2 (𝜑𝐾 ∈ 𝑛-Locally Conn)
6 cvmliftmo.o . 2 (𝜑𝑂𝑌)
7 cvmliftmoi.m . 2 (𝜑𝑀 ∈ (𝐾 Cn 𝐶))
8 cvmliftmoi.n . 2 (𝜑𝑁 ∈ (𝐾 Cn 𝐶))
9 cvmliftmoi.g . 2 (𝜑 → (𝐹𝑀) = (𝐹𝑁))
10 cvmliftmoi.p . 2 (𝜑 → (𝑀𝑂) = (𝑁𝑂))
11 eqid 2733 . . 3 (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))}) = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
1211cvmscbv 35323 . 2 (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))}) = (𝑏𝐽 ↦ {𝑚 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑚 = (𝐹𝑏) ∧ ∀𝑟𝑚 (∀𝑤 ∈ (𝑚 ∖ {𝑟})(𝑟𝑤) = ∅ ∧ (𝐹𝑟) ∈ ((𝐶t 𝑟)Homeo(𝐽t 𝑏))))})
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12cvmliftmolem2 35347 1 (𝜑𝑀 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  {crab 3396  cdif 3895  cin 3897  c0 4282  𝒫 cpw 4549  {csn 4575   cuni 4858  cmpt 5174  ccnv 5618  cres 5621  cima 5622  ccom 5623  cfv 6486  (class class class)co 7352  t crest 17326   Cn ccn 23140  Conncconn 23327  𝑛-Locally cnlly 23381  Homeochmeo 23669   CovMap ccvm 35320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-map 8758  df-en 8876  df-fin 8879  df-fi 9302  df-rest 17328  df-topgen 17349  df-top 22810  df-topon 22827  df-bases 22862  df-cld 22935  df-nei 23014  df-cn 23143  df-conn 23328  df-nlly 23383  df-hmeo 23671  df-cvm 35321
This theorem is referenced by:  cvmliftmo  35349  cvmliftphtlem  35382
  Copyright terms: Public domain W3C validator