![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftmoi | Structured version Visualization version GIF version |
Description: A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015.) |
Ref | Expression |
---|---|
cvmliftmo.b | ⊢ 𝐵 = ∪ 𝐶 |
cvmliftmo.y | ⊢ 𝑌 = ∪ 𝐾 |
cvmliftmo.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
cvmliftmo.k | ⊢ (𝜑 → 𝐾 ∈ Conn) |
cvmliftmo.l | ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Conn) |
cvmliftmo.o | ⊢ (𝜑 → 𝑂 ∈ 𝑌) |
cvmliftmoi.m | ⊢ (𝜑 → 𝑀 ∈ (𝐾 Cn 𝐶)) |
cvmliftmoi.n | ⊢ (𝜑 → 𝑁 ∈ (𝐾 Cn 𝐶)) |
cvmliftmoi.g | ⊢ (𝜑 → (𝐹 ∘ 𝑀) = (𝐹 ∘ 𝑁)) |
cvmliftmoi.p | ⊢ (𝜑 → (𝑀‘𝑂) = (𝑁‘𝑂)) |
Ref | Expression |
---|---|
cvmliftmoi | ⊢ (𝜑 → 𝑀 = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmliftmo.b | . 2 ⊢ 𝐵 = ∪ 𝐶 | |
2 | cvmliftmo.y | . 2 ⊢ 𝑌 = ∪ 𝐾 | |
3 | cvmliftmo.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | |
4 | cvmliftmo.k | . 2 ⊢ (𝜑 → 𝐾 ∈ Conn) | |
5 | cvmliftmo.l | . 2 ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Conn) | |
6 | cvmliftmo.o | . 2 ⊢ (𝜑 → 𝑂 ∈ 𝑌) | |
7 | cvmliftmoi.m | . 2 ⊢ (𝜑 → 𝑀 ∈ (𝐾 Cn 𝐶)) | |
8 | cvmliftmoi.n | . 2 ⊢ (𝜑 → 𝑁 ∈ (𝐾 Cn 𝐶)) | |
9 | cvmliftmoi.g | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝑀) = (𝐹 ∘ 𝑁)) | |
10 | cvmliftmoi.p | . 2 ⊢ (𝜑 → (𝑀‘𝑂) = (𝑁‘𝑂)) | |
11 | eqid 2731 | . . 3 ⊢ (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
12 | 11 | cvmscbv 34544 | . 2 ⊢ (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) = (𝑏 ∈ 𝐽 ↦ {𝑚 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑚 = (◡𝐹 “ 𝑏) ∧ ∀𝑟 ∈ 𝑚 (∀𝑤 ∈ (𝑚 ∖ {𝑟})(𝑟 ∩ 𝑤) = ∅ ∧ (𝐹 ↾ 𝑟) ∈ ((𝐶 ↾t 𝑟)Homeo(𝐽 ↾t 𝑏))))}) |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 | cvmliftmolem2 34568 | 1 ⊢ (𝜑 → 𝑀 = 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 {crab 3431 ∖ cdif 3946 ∩ cin 3948 ∅c0 4323 𝒫 cpw 4603 {csn 4629 ∪ cuni 4909 ↦ cmpt 5232 ◡ccnv 5676 ↾ cres 5679 “ cima 5680 ∘ ccom 5681 ‘cfv 6544 (class class class)co 7412 ↾t crest 17371 Cn ccn 22949 Conncconn 23136 𝑛-Locally cnlly 23190 Homeochmeo 23478 CovMap ccvm 34541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-map 8825 df-en 8943 df-fin 8946 df-fi 9409 df-rest 17373 df-topgen 17394 df-top 22617 df-topon 22634 df-bases 22670 df-cld 22744 df-nei 22823 df-cn 22952 df-conn 23137 df-nlly 23192 df-hmeo 23480 df-cvm 34542 |
This theorem is referenced by: cvmliftmo 34570 cvmliftphtlem 34603 |
Copyright terms: Public domain | W3C validator |