![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftmoi | Structured version Visualization version GIF version |
Description: A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015.) |
Ref | Expression |
---|---|
cvmliftmo.b | ⊢ 𝐵 = ∪ 𝐶 |
cvmliftmo.y | ⊢ 𝑌 = ∪ 𝐾 |
cvmliftmo.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
cvmliftmo.k | ⊢ (𝜑 → 𝐾 ∈ Conn) |
cvmliftmo.l | ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Conn) |
cvmliftmo.o | ⊢ (𝜑 → 𝑂 ∈ 𝑌) |
cvmliftmoi.m | ⊢ (𝜑 → 𝑀 ∈ (𝐾 Cn 𝐶)) |
cvmliftmoi.n | ⊢ (𝜑 → 𝑁 ∈ (𝐾 Cn 𝐶)) |
cvmliftmoi.g | ⊢ (𝜑 → (𝐹 ∘ 𝑀) = (𝐹 ∘ 𝑁)) |
cvmliftmoi.p | ⊢ (𝜑 → (𝑀‘𝑂) = (𝑁‘𝑂)) |
Ref | Expression |
---|---|
cvmliftmoi | ⊢ (𝜑 → 𝑀 = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmliftmo.b | . 2 ⊢ 𝐵 = ∪ 𝐶 | |
2 | cvmliftmo.y | . 2 ⊢ 𝑌 = ∪ 𝐾 | |
3 | cvmliftmo.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | |
4 | cvmliftmo.k | . 2 ⊢ (𝜑 → 𝐾 ∈ Conn) | |
5 | cvmliftmo.l | . 2 ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Conn) | |
6 | cvmliftmo.o | . 2 ⊢ (𝜑 → 𝑂 ∈ 𝑌) | |
7 | cvmliftmoi.m | . 2 ⊢ (𝜑 → 𝑀 ∈ (𝐾 Cn 𝐶)) | |
8 | cvmliftmoi.n | . 2 ⊢ (𝜑 → 𝑁 ∈ (𝐾 Cn 𝐶)) | |
9 | cvmliftmoi.g | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝑀) = (𝐹 ∘ 𝑁)) | |
10 | cvmliftmoi.p | . 2 ⊢ (𝜑 → (𝑀‘𝑂) = (𝑁‘𝑂)) | |
11 | eqid 2740 | . . 3 ⊢ (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
12 | 11 | cvmscbv 35226 | . 2 ⊢ (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) = (𝑏 ∈ 𝐽 ↦ {𝑚 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑚 = (◡𝐹 “ 𝑏) ∧ ∀𝑟 ∈ 𝑚 (∀𝑤 ∈ (𝑚 ∖ {𝑟})(𝑟 ∩ 𝑤) = ∅ ∧ (𝐹 ↾ 𝑟) ∈ ((𝐶 ↾t 𝑟)Homeo(𝐽 ↾t 𝑏))))}) |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 | cvmliftmolem2 35250 | 1 ⊢ (𝜑 → 𝑀 = 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 ∖ cdif 3973 ∩ cin 3975 ∅c0 4352 𝒫 cpw 4622 {csn 4648 ∪ cuni 4931 ↦ cmpt 5249 ◡ccnv 5699 ↾ cres 5702 “ cima 5703 ∘ ccom 5704 ‘cfv 6573 (class class class)co 7448 ↾t crest 17480 Cn ccn 23253 Conncconn 23440 𝑛-Locally cnlly 23494 Homeochmeo 23782 CovMap ccvm 35223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-map 8886 df-en 9004 df-fin 9007 df-fi 9480 df-rest 17482 df-topgen 17503 df-top 22921 df-topon 22938 df-bases 22974 df-cld 23048 df-nei 23127 df-cn 23256 df-conn 23441 df-nlly 23496 df-hmeo 23784 df-cvm 35224 |
This theorem is referenced by: cvmliftmo 35252 cvmliftphtlem 35285 |
Copyright terms: Public domain | W3C validator |