Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftmoi Structured version   Visualization version   GIF version

Theorem cvmliftmoi 34569
Description: A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
cvmliftmo.b 𝐵 = 𝐶
cvmliftmo.y 𝑌 = 𝐾
cvmliftmo.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftmo.k (𝜑𝐾 ∈ Conn)
cvmliftmo.l (𝜑𝐾 ∈ 𝑛-Locally Conn)
cvmliftmo.o (𝜑𝑂𝑌)
cvmliftmoi.m (𝜑𝑀 ∈ (𝐾 Cn 𝐶))
cvmliftmoi.n (𝜑𝑁 ∈ (𝐾 Cn 𝐶))
cvmliftmoi.g (𝜑 → (𝐹𝑀) = (𝐹𝑁))
cvmliftmoi.p (𝜑 → (𝑀𝑂) = (𝑁𝑂))
Assertion
Ref Expression
cvmliftmoi (𝜑𝑀 = 𝑁)

Proof of Theorem cvmliftmoi
Dummy variables 𝑏 𝑘 𝑚 𝑟 𝑠 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmliftmo.b . 2 𝐵 = 𝐶
2 cvmliftmo.y . 2 𝑌 = 𝐾
3 cvmliftmo.f . 2 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmliftmo.k . 2 (𝜑𝐾 ∈ Conn)
5 cvmliftmo.l . 2 (𝜑𝐾 ∈ 𝑛-Locally Conn)
6 cvmliftmo.o . 2 (𝜑𝑂𝑌)
7 cvmliftmoi.m . 2 (𝜑𝑀 ∈ (𝐾 Cn 𝐶))
8 cvmliftmoi.n . 2 (𝜑𝑁 ∈ (𝐾 Cn 𝐶))
9 cvmliftmoi.g . 2 (𝜑 → (𝐹𝑀) = (𝐹𝑁))
10 cvmliftmoi.p . 2 (𝜑 → (𝑀𝑂) = (𝑁𝑂))
11 eqid 2731 . . 3 (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))}) = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
1211cvmscbv 34544 . 2 (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))}) = (𝑏𝐽 ↦ {𝑚 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑚 = (𝐹𝑏) ∧ ∀𝑟𝑚 (∀𝑤 ∈ (𝑚 ∖ {𝑟})(𝑟𝑤) = ∅ ∧ (𝐹𝑟) ∈ ((𝐶t 𝑟)Homeo(𝐽t 𝑏))))})
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12cvmliftmolem2 34568 1 (𝜑𝑀 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wral 3060  {crab 3431  cdif 3946  cin 3948  c0 4323  𝒫 cpw 4603  {csn 4629   cuni 4909  cmpt 5232  ccnv 5676  cres 5679  cima 5680  ccom 5681  cfv 6544  (class class class)co 7412  t crest 17371   Cn ccn 22949  Conncconn 23136  𝑛-Locally cnlly 23190  Homeochmeo 23478   CovMap ccvm 34541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-map 8825  df-en 8943  df-fin 8946  df-fi 9409  df-rest 17373  df-topgen 17394  df-top 22617  df-topon 22634  df-bases 22670  df-cld 22744  df-nei 22823  df-cn 22952  df-conn 23137  df-nlly 23192  df-hmeo 23480  df-cvm 34542
This theorem is referenced by:  cvmliftmo  34570  cvmliftphtlem  34603
  Copyright terms: Public domain W3C validator