Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftmoi Structured version   Visualization version   GIF version

Theorem cvmliftmoi 35270
Description: A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
cvmliftmo.b 𝐵 = 𝐶
cvmliftmo.y 𝑌 = 𝐾
cvmliftmo.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftmo.k (𝜑𝐾 ∈ Conn)
cvmliftmo.l (𝜑𝐾 ∈ 𝑛-Locally Conn)
cvmliftmo.o (𝜑𝑂𝑌)
cvmliftmoi.m (𝜑𝑀 ∈ (𝐾 Cn 𝐶))
cvmliftmoi.n (𝜑𝑁 ∈ (𝐾 Cn 𝐶))
cvmliftmoi.g (𝜑 → (𝐹𝑀) = (𝐹𝑁))
cvmliftmoi.p (𝜑 → (𝑀𝑂) = (𝑁𝑂))
Assertion
Ref Expression
cvmliftmoi (𝜑𝑀 = 𝑁)

Proof of Theorem cvmliftmoi
Dummy variables 𝑏 𝑘 𝑚 𝑟 𝑠 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmliftmo.b . 2 𝐵 = 𝐶
2 cvmliftmo.y . 2 𝑌 = 𝐾
3 cvmliftmo.f . 2 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmliftmo.k . 2 (𝜑𝐾 ∈ Conn)
5 cvmliftmo.l . 2 (𝜑𝐾 ∈ 𝑛-Locally Conn)
6 cvmliftmo.o . 2 (𝜑𝑂𝑌)
7 cvmliftmoi.m . 2 (𝜑𝑀 ∈ (𝐾 Cn 𝐶))
8 cvmliftmoi.n . 2 (𝜑𝑁 ∈ (𝐾 Cn 𝐶))
9 cvmliftmoi.g . 2 (𝜑 → (𝐹𝑀) = (𝐹𝑁))
10 cvmliftmoi.p . 2 (𝜑 → (𝑀𝑂) = (𝑁𝑂))
11 eqid 2729 . . 3 (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))}) = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
1211cvmscbv 35245 . 2 (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))}) = (𝑏𝐽 ↦ {𝑚 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑚 = (𝐹𝑏) ∧ ∀𝑟𝑚 (∀𝑤 ∈ (𝑚 ∖ {𝑟})(𝑟𝑤) = ∅ ∧ (𝐹𝑟) ∈ ((𝐶t 𝑟)Homeo(𝐽t 𝑏))))})
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12cvmliftmolem2 35269 1 (𝜑𝑀 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405  cdif 3911  cin 3913  c0 4296  𝒫 cpw 4563  {csn 4589   cuni 4871  cmpt 5188  ccnv 5637  cres 5640  cima 5641  ccom 5642  cfv 6511  (class class class)co 7387  t crest 17383   Cn ccn 23111  Conncconn 23298  𝑛-Locally cnlly 23352  Homeochmeo 23640   CovMap ccvm 35242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-map 8801  df-en 8919  df-fin 8922  df-fi 9362  df-rest 17385  df-topgen 17406  df-top 22781  df-topon 22798  df-bases 22833  df-cld 22906  df-nei 22985  df-cn 23114  df-conn 23299  df-nlly 23354  df-hmeo 23642  df-cvm 35243
This theorem is referenced by:  cvmliftmo  35271  cvmliftphtlem  35304
  Copyright terms: Public domain W3C validator