| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftmoi | Structured version Visualization version GIF version | ||
| Description: A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| cvmliftmo.b | ⊢ 𝐵 = ∪ 𝐶 |
| cvmliftmo.y | ⊢ 𝑌 = ∪ 𝐾 |
| cvmliftmo.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| cvmliftmo.k | ⊢ (𝜑 → 𝐾 ∈ Conn) |
| cvmliftmo.l | ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Conn) |
| cvmliftmo.o | ⊢ (𝜑 → 𝑂 ∈ 𝑌) |
| cvmliftmoi.m | ⊢ (𝜑 → 𝑀 ∈ (𝐾 Cn 𝐶)) |
| cvmliftmoi.n | ⊢ (𝜑 → 𝑁 ∈ (𝐾 Cn 𝐶)) |
| cvmliftmoi.g | ⊢ (𝜑 → (𝐹 ∘ 𝑀) = (𝐹 ∘ 𝑁)) |
| cvmliftmoi.p | ⊢ (𝜑 → (𝑀‘𝑂) = (𝑁‘𝑂)) |
| Ref | Expression |
|---|---|
| cvmliftmoi | ⊢ (𝜑 → 𝑀 = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvmliftmo.b | . 2 ⊢ 𝐵 = ∪ 𝐶 | |
| 2 | cvmliftmo.y | . 2 ⊢ 𝑌 = ∪ 𝐾 | |
| 3 | cvmliftmo.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | |
| 4 | cvmliftmo.k | . 2 ⊢ (𝜑 → 𝐾 ∈ Conn) | |
| 5 | cvmliftmo.l | . 2 ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Conn) | |
| 6 | cvmliftmo.o | . 2 ⊢ (𝜑 → 𝑂 ∈ 𝑌) | |
| 7 | cvmliftmoi.m | . 2 ⊢ (𝜑 → 𝑀 ∈ (𝐾 Cn 𝐶)) | |
| 8 | cvmliftmoi.n | . 2 ⊢ (𝜑 → 𝑁 ∈ (𝐾 Cn 𝐶)) | |
| 9 | cvmliftmoi.g | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝑀) = (𝐹 ∘ 𝑁)) | |
| 10 | cvmliftmoi.p | . 2 ⊢ (𝜑 → (𝑀‘𝑂) = (𝑁‘𝑂)) | |
| 11 | eqid 2730 | . . 3 ⊢ (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
| 12 | 11 | cvmscbv 35252 | . 2 ⊢ (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) = (𝑏 ∈ 𝐽 ↦ {𝑚 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑚 = (◡𝐹 “ 𝑏) ∧ ∀𝑟 ∈ 𝑚 (∀𝑤 ∈ (𝑚 ∖ {𝑟})(𝑟 ∩ 𝑤) = ∅ ∧ (𝐹 ↾ 𝑟) ∈ ((𝐶 ↾t 𝑟)Homeo(𝐽 ↾t 𝑏))))}) |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 | cvmliftmolem2 35276 | 1 ⊢ (𝜑 → 𝑀 = 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 ∖ cdif 3914 ∩ cin 3916 ∅c0 4299 𝒫 cpw 4566 {csn 4592 ∪ cuni 4874 ↦ cmpt 5191 ◡ccnv 5640 ↾ cres 5643 “ cima 5644 ∘ ccom 5645 ‘cfv 6514 (class class class)co 7390 ↾t crest 17390 Cn ccn 23118 Conncconn 23305 𝑛-Locally cnlly 23359 Homeochmeo 23647 CovMap ccvm 35249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-map 8804 df-en 8922 df-fin 8925 df-fi 9369 df-rest 17392 df-topgen 17413 df-top 22788 df-topon 22805 df-bases 22840 df-cld 22913 df-nei 22992 df-cn 23121 df-conn 23306 df-nlly 23361 df-hmeo 23649 df-cvm 35250 |
| This theorem is referenced by: cvmliftmo 35278 cvmliftphtlem 35311 |
| Copyright terms: Public domain | W3C validator |