Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmfo | Structured version Visualization version GIF version |
Description: A covering map is an onto function. (Contributed by Mario Carneiro, 13-Feb-2015.) |
Ref | Expression |
---|---|
cvmlift.1 | ⊢ 𝐵 = ∪ 𝐶 |
cvmfo.2 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cvmfo | ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵–onto→𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
2 | 1 | cvmscbv 33325 | . 2 ⊢ (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) = (𝑎 ∈ 𝐽 ↦ {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑏 = (◡𝐹 “ 𝑎) ∧ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑎))))}) |
3 | cvmlift.1 | . 2 ⊢ 𝐵 = ∪ 𝐶 | |
4 | cvmfo.2 | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
5 | 2, 3, 4 | cvmfolem 33346 | 1 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵–onto→𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3062 {crab 3404 ∖ cdif 3894 ∩ cin 3896 ∅c0 4267 𝒫 cpw 4545 {csn 4571 ∪ cuni 4850 ↦ cmpt 5170 ◡ccnv 5606 ↾ cres 5609 “ cima 5610 –onto→wfo 6463 (class class class)co 7315 ↾t crest 17201 Homeochmeo 22976 CovMap ccvm 33322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-1st 7876 df-2nd 7877 df-map 8665 df-en 8782 df-fin 8785 df-fi 9240 df-rest 17203 df-topgen 17224 df-top 22115 df-topon 22132 df-bases 22168 df-cn 22450 df-hmeo 22978 df-cvm 33323 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |