Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrne Structured version   Visualization version   GIF version

Theorem cvrne 37772
Description: The covers relation implies inequality. (Contributed by NM, 13-Oct-2011.)
Hypotheses
Ref Expression
cvrne.b 𝐡 = (Baseβ€˜πΎ)
cvrne.c 𝐢 = ( β‹– β€˜πΎ)
Assertion
Ref Expression
cvrne (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) β†’ 𝑋 β‰  π‘Œ)

Proof of Theorem cvrne
StepHypRef Expression
1 cvrne.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 eqid 2737 . . 3 (ltβ€˜πΎ) = (ltβ€˜πΎ)
3 cvrne.c . . 3 𝐢 = ( β‹– β€˜πΎ)
41, 2, 3cvrlt 37761 . 2 (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) β†’ 𝑋(ltβ€˜πΎ)π‘Œ)
5 eqid 2737 . . . 4 (leβ€˜πΎ) = (leβ€˜πΎ)
65, 2pltval 18228 . . 3 ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋(ltβ€˜πΎ)π‘Œ ↔ (𝑋(leβ€˜πΎ)π‘Œ ∧ 𝑋 β‰  π‘Œ)))
76simplbda 501 . 2 (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋(ltβ€˜πΎ)π‘Œ) β†’ 𝑋 β‰  π‘Œ)
84, 7syldan 592 1 (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ π‘‹πΆπ‘Œ) β†’ 𝑋 β‰  π‘Œ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2944   class class class wbr 5110  β€˜cfv 6501  Basecbs 17090  lecple 17147  ltcplt 18204   β‹– ccvr 37753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6453  df-fun 6503  df-fv 6509  df-plt 18226  df-covers 37757
This theorem is referenced by:  cvrnrefN  37773  cvrcmp  37774  cdleme3b  38721  cdleme3c  38722  cdleme7e  38739
  Copyright terms: Public domain W3C validator