![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 9p5e14 | Structured version Visualization version GIF version |
Description: 9 + 5 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
9p5e14 | ⊢ (9 + 5) = ;14 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn0 11774 | . 2 ⊢ 9 ∈ ℕ0 | |
2 | 4nn0 11769 | . 2 ⊢ 4 ∈ ℕ0 | |
3 | 3nn0 11768 | . 2 ⊢ 3 ∈ ℕ0 | |
4 | df-5 11556 | . 2 ⊢ 5 = (4 + 1) | |
5 | df-4 11555 | . 2 ⊢ 4 = (3 + 1) | |
6 | 9p4e13 12042 | . 2 ⊢ (9 + 4) = ;13 | |
7 | 1, 2, 3, 4, 5, 6 | 6p5lem 12023 | 1 ⊢ (9 + 5) = ;14 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1522 (class class class)co 7021 1c1 10389 + caddc 10391 3c3 11546 4c4 11547 5c5 11548 9c9 11552 ;cdc 11952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 ax-resscn 10445 ax-1cn 10446 ax-icn 10447 ax-addcl 10448 ax-addrcl 10449 ax-mulcl 10450 ax-mulrcl 10451 ax-mulcom 10452 ax-addass 10453 ax-mulass 10454 ax-distr 10455 ax-i2m1 10456 ax-1ne0 10457 ax-1rid 10458 ax-rnegex 10459 ax-rrecex 10460 ax-cnre 10461 ax-pre-lttri 10462 ax-pre-lttrn 10463 ax-pre-ltadd 10464 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-pss 3880 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-tp 4481 df-op 4483 df-uni 4750 df-iun 4831 df-br 4967 df-opab 5029 df-mpt 5046 df-tr 5069 df-id 5353 df-eprel 5358 df-po 5367 df-so 5368 df-fr 5407 df-we 5409 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-pred 6028 df-ord 6074 df-on 6075 df-lim 6076 df-suc 6077 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-ov 7024 df-om 7442 df-wrecs 7803 df-recs 7865 df-rdg 7903 df-er 8144 df-en 8363 df-dom 8364 df-sdom 8365 df-pnf 10528 df-mnf 10529 df-ltxr 10531 df-nn 11492 df-2 11553 df-3 11554 df-4 11555 df-5 11556 df-6 11557 df-7 11558 df-8 11559 df-9 11560 df-n0 11751 df-dec 11953 |
This theorem is referenced by: 9p6e15 12044 9t6e54 12079 2503lem2 16305 4001lem3 16310 log2ublem3 25213 hgt750lem2 31545 kur14lem8 32075 fmtno4nprmfac193 43245 |
Copyright terms: Public domain | W3C validator |