| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6t5e30 | Structured version Visualization version GIF version | ||
| Description: 6 times 5 equals 30. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 6t5e30 | ⊢ (6 · 5) = ;30 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn0 12469 | . 2 ⊢ 6 ∈ ℕ0 | |
| 2 | 4nn0 12467 | . 2 ⊢ 4 ∈ ℕ0 | |
| 3 | df-5 12253 | . 2 ⊢ 5 = (4 + 1) | |
| 4 | 6t4e24 12761 | . 2 ⊢ (6 · 4) = ;24 | |
| 5 | 2nn0 12465 | . . 3 ⊢ 2 ∈ ℕ0 | |
| 6 | eqid 2730 | . . 3 ⊢ ;24 = ;24 | |
| 7 | 2p1e3 12329 | . . 3 ⊢ (2 + 1) = 3 | |
| 8 | 6cn 12278 | . . . 4 ⊢ 6 ∈ ℂ | |
| 9 | 4cn 12272 | . . . 4 ⊢ 4 ∈ ℂ | |
| 10 | 6p4e10 12727 | . . . 4 ⊢ (6 + 4) = ;10 | |
| 11 | 8, 9, 10 | addcomli 11372 | . . 3 ⊢ (4 + 6) = ;10 |
| 12 | 5, 2, 1, 6, 7, 11 | decaddci2 12717 | . 2 ⊢ (;24 + 6) = ;30 |
| 13 | 1, 2, 3, 4, 12 | 4t3lem 12752 | 1 ⊢ (6 · 5) = ;30 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7389 0cc0 11074 1c1 11075 · cmul 11079 2c2 12242 3c3 12243 4c4 12244 5c5 12245 6c6 12246 ;cdc 12655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-ltxr 11219 df-sub 11413 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-dec 12656 |
| This theorem is referenced by: 6t6e36 12763 5recm6rec 12798 2exp16 17067 prmo5 17105 fmtno5lem1 47544 fmtno5lem2 47545 |
| Copyright terms: Public domain | W3C validator |