MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3c Structured version   Visualization version   GIF version

Theorem 2lgslem3c 26546
Description: Lemma for 2lgslem3c1 26550. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3c ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 5)) → 𝑁 = ((2 · 𝐾) + 1))

Proof of Theorem 2lgslem3c
StepHypRef Expression
1 2lgslem2.n . . 3 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
2 oveq1 7282 . . . . 5 (𝑃 = ((8 · 𝐾) + 5) → (𝑃 − 1) = (((8 · 𝐾) + 5) − 1))
32oveq1d 7290 . . . 4 (𝑃 = ((8 · 𝐾) + 5) → ((𝑃 − 1) / 2) = ((((8 · 𝐾) + 5) − 1) / 2))
4 fvoveq1 7298 . . . 4 (𝑃 = ((8 · 𝐾) + 5) → (⌊‘(𝑃 / 4)) = (⌊‘(((8 · 𝐾) + 5) / 4)))
53, 4oveq12d 7293 . . 3 (𝑃 = ((8 · 𝐾) + 5) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (((((8 · 𝐾) + 5) − 1) / 2) − (⌊‘(((8 · 𝐾) + 5) / 4))))
61, 5eqtrid 2790 . 2 (𝑃 = ((8 · 𝐾) + 5) → 𝑁 = (((((8 · 𝐾) + 5) − 1) / 2) − (⌊‘(((8 · 𝐾) + 5) / 4))))
7 8nn0 12256 . . . . . . . . . . 11 8 ∈ ℕ0
87a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 ∈ ℕ0)
9 id 22 . . . . . . . . . 10 (𝐾 ∈ ℕ0𝐾 ∈ ℕ0)
108, 9nn0mulcld 12298 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (8 · 𝐾) ∈ ℕ0)
1110nn0cnd 12295 . . . . . . . 8 (𝐾 ∈ ℕ0 → (8 · 𝐾) ∈ ℂ)
12 5cn 12061 . . . . . . . . 9 5 ∈ ℂ
1312a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 5 ∈ ℂ)
14 1cnd 10970 . . . . . . . 8 (𝐾 ∈ ℕ0 → 1 ∈ ℂ)
1511, 13, 14addsubassd 11352 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 5) − 1) = ((8 · 𝐾) + (5 − 1)))
16 4t2e8 12141 . . . . . . . . . . . 12 (4 · 2) = 8
1716eqcomi 2747 . . . . . . . . . . 11 8 = (4 · 2)
1817a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 = (4 · 2))
1918oveq1d 7290 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (8 · 𝐾) = ((4 · 2) · 𝐾))
20 4cn 12058 . . . . . . . . . . 11 4 ∈ ℂ
2120a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 4 ∈ ℂ)
22 2cn 12048 . . . . . . . . . . 11 2 ∈ ℂ
2322a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 2 ∈ ℂ)
24 nn0cn 12243 . . . . . . . . . 10 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
2521, 23, 24mul32d 11185 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((4 · 2) · 𝐾) = ((4 · 𝐾) · 2))
2619, 25eqtrd 2778 . . . . . . . 8 (𝐾 ∈ ℕ0 → (8 · 𝐾) = ((4 · 𝐾) · 2))
27 5m1e4 12103 . . . . . . . . 9 (5 − 1) = 4
2827a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → (5 − 1) = 4)
2926, 28oveq12d 7293 . . . . . . 7 (𝐾 ∈ ℕ0 → ((8 · 𝐾) + (5 − 1)) = (((4 · 𝐾) · 2) + 4))
3015, 29eqtrd 2778 . . . . . 6 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 5) − 1) = (((4 · 𝐾) · 2) + 4))
3130oveq1d 7290 . . . . 5 (𝐾 ∈ ℕ0 → ((((8 · 𝐾) + 5) − 1) / 2) = ((((4 · 𝐾) · 2) + 4) / 2))
32 4nn0 12252 . . . . . . . . . 10 4 ∈ ℕ0
3332a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ0 → 4 ∈ ℕ0)
3433, 9nn0mulcld 12298 . . . . . . . 8 (𝐾 ∈ ℕ0 → (4 · 𝐾) ∈ ℕ0)
3534nn0cnd 12295 . . . . . . 7 (𝐾 ∈ ℕ0 → (4 · 𝐾) ∈ ℂ)
3635, 23mulcld 10995 . . . . . 6 (𝐾 ∈ ℕ0 → ((4 · 𝐾) · 2) ∈ ℂ)
37 2rp 12735 . . . . . . . 8 2 ∈ ℝ+
3837a1i 11 . . . . . . 7 (𝐾 ∈ ℕ0 → 2 ∈ ℝ+)
3938rpcnne0d 12781 . . . . . 6 (𝐾 ∈ ℕ0 → (2 ∈ ℂ ∧ 2 ≠ 0))
40 divdir 11658 . . . . . 6 ((((4 · 𝐾) · 2) ∈ ℂ ∧ 4 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((4 · 𝐾) · 2) + 4) / 2) = ((((4 · 𝐾) · 2) / 2) + (4 / 2)))
4136, 21, 39, 40syl3anc 1370 . . . . 5 (𝐾 ∈ ℕ0 → ((((4 · 𝐾) · 2) + 4) / 2) = ((((4 · 𝐾) · 2) / 2) + (4 / 2)))
42 2ne0 12077 . . . . . . . 8 2 ≠ 0
4342a1i 11 . . . . . . 7 (𝐾 ∈ ℕ0 → 2 ≠ 0)
4435, 23, 43divcan4d 11757 . . . . . 6 (𝐾 ∈ ℕ0 → (((4 · 𝐾) · 2) / 2) = (4 · 𝐾))
45 4d2e2 12143 . . . . . . 7 (4 / 2) = 2
4645a1i 11 . . . . . 6 (𝐾 ∈ ℕ0 → (4 / 2) = 2)
4744, 46oveq12d 7293 . . . . 5 (𝐾 ∈ ℕ0 → ((((4 · 𝐾) · 2) / 2) + (4 / 2)) = ((4 · 𝐾) + 2))
4831, 41, 473eqtrd 2782 . . . 4 (𝐾 ∈ ℕ0 → ((((8 · 𝐾) + 5) − 1) / 2) = ((4 · 𝐾) + 2))
49 4ne0 12081 . . . . . . . . . 10 4 ≠ 0
5020, 49pm3.2i 471 . . . . . . . . 9 (4 ∈ ℂ ∧ 4 ≠ 0)
5150a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → (4 ∈ ℂ ∧ 4 ≠ 0))
52 divdir 11658 . . . . . . . 8 (((8 · 𝐾) ∈ ℂ ∧ 5 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → (((8 · 𝐾) + 5) / 4) = (((8 · 𝐾) / 4) + (5 / 4)))
5311, 13, 51, 52syl3anc 1370 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 5) / 4) = (((8 · 𝐾) / 4) + (5 / 4)))
54 8cn 12070 . . . . . . . . . . 11 8 ∈ ℂ
5554a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 8 ∈ ℂ)
56 div23 11652 . . . . . . . . . 10 ((8 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((8 · 𝐾) / 4) = ((8 / 4) · 𝐾))
5755, 24, 51, 56syl3anc 1370 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 4) = ((8 / 4) · 𝐾))
5817oveq1i 7285 . . . . . . . . . . . 12 (8 / 4) = ((4 · 2) / 4)
5922, 20, 49divcan3i 11721 . . . . . . . . . . . 12 ((4 · 2) / 4) = 2
6058, 59eqtri 2766 . . . . . . . . . . 11 (8 / 4) = 2
6160a1i 11 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (8 / 4) = 2)
6261oveq1d 7290 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((8 / 4) · 𝐾) = (2 · 𝐾))
6357, 62eqtrd 2778 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((8 · 𝐾) / 4) = (2 · 𝐾))
6463oveq1d 7290 . . . . . . 7 (𝐾 ∈ ℕ0 → (((8 · 𝐾) / 4) + (5 / 4)) = ((2 · 𝐾) + (5 / 4)))
6553, 64eqtrd 2778 . . . . . 6 (𝐾 ∈ ℕ0 → (((8 · 𝐾) + 5) / 4) = ((2 · 𝐾) + (5 / 4)))
6665fveq2d 6778 . . . . 5 (𝐾 ∈ ℕ0 → (⌊‘(((8 · 𝐾) + 5) / 4)) = (⌊‘((2 · 𝐾) + (5 / 4))))
67 1lt4 12149 . . . . . 6 1 < 4
68 2nn0 12250 . . . . . . . . . . . 12 2 ∈ ℕ0
6968a1i 11 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → 2 ∈ ℕ0)
7069, 9nn0mulcld 12298 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℕ0)
7170nn0zd 12424 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℤ)
7271peano2zd 12429 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((2 · 𝐾) + 1) ∈ ℤ)
73 1nn0 12249 . . . . . . . . 9 1 ∈ ℕ0
7473a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 1 ∈ ℕ0)
75 4nn 12056 . . . . . . . . 9 4 ∈ ℕ
7675a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 4 ∈ ℕ)
77 adddivflid 13538 . . . . . . . 8 ((((2 · 𝐾) + 1) ∈ ℤ ∧ 1 ∈ ℕ0 ∧ 4 ∈ ℕ) → (1 < 4 ↔ (⌊‘(((2 · 𝐾) + 1) + (1 / 4))) = ((2 · 𝐾) + 1)))
7872, 74, 76, 77syl3anc 1370 . . . . . . 7 (𝐾 ∈ ℕ0 → (1 < 4 ↔ (⌊‘(((2 · 𝐾) + 1) + (1 / 4))) = ((2 · 𝐾) + 1)))
7923, 24mulcld 10995 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℂ)
8049a1i 11 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → 4 ≠ 0)
8121, 80reccld 11744 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (1 / 4) ∈ ℂ)
8279, 14, 81addassd 10997 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (((2 · 𝐾) + 1) + (1 / 4)) = ((2 · 𝐾) + (1 + (1 / 4))))
83 df-5 12039 . . . . . . . . . . . . . 14 5 = (4 + 1)
8483oveq1i 7285 . . . . . . . . . . . . 13 (5 / 4) = ((4 + 1) / 4)
85 ax-1cn 10929 . . . . . . . . . . . . . 14 1 ∈ ℂ
8620, 85, 20, 49divdiri 11732 . . . . . . . . . . . . 13 ((4 + 1) / 4) = ((4 / 4) + (1 / 4))
8720, 49dividi 11708 . . . . . . . . . . . . . 14 (4 / 4) = 1
8887oveq1i 7285 . . . . . . . . . . . . 13 ((4 / 4) + (1 / 4)) = (1 + (1 / 4))
8984, 86, 883eqtri 2770 . . . . . . . . . . . 12 (5 / 4) = (1 + (1 / 4))
9089a1i 11 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → (5 / 4) = (1 + (1 / 4)))
9190eqcomd 2744 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (1 + (1 / 4)) = (5 / 4))
9291oveq2d 7291 . . . . . . . . 9 (𝐾 ∈ ℕ0 → ((2 · 𝐾) + (1 + (1 / 4))) = ((2 · 𝐾) + (5 / 4)))
9382, 92eqtrd 2778 . . . . . . . 8 (𝐾 ∈ ℕ0 → (((2 · 𝐾) + 1) + (1 / 4)) = ((2 · 𝐾) + (5 / 4)))
9493fveqeq2d 6782 . . . . . . 7 (𝐾 ∈ ℕ0 → ((⌊‘(((2 · 𝐾) + 1) + (1 / 4))) = ((2 · 𝐾) + 1) ↔ (⌊‘((2 · 𝐾) + (5 / 4))) = ((2 · 𝐾) + 1)))
9578, 94bitrd 278 . . . . . 6 (𝐾 ∈ ℕ0 → (1 < 4 ↔ (⌊‘((2 · 𝐾) + (5 / 4))) = ((2 · 𝐾) + 1)))
9667, 95mpbii 232 . . . . 5 (𝐾 ∈ ℕ0 → (⌊‘((2 · 𝐾) + (5 / 4))) = ((2 · 𝐾) + 1))
9766, 96eqtrd 2778 . . . 4 (𝐾 ∈ ℕ0 → (⌊‘(((8 · 𝐾) + 5) / 4)) = ((2 · 𝐾) + 1))
9848, 97oveq12d 7293 . . 3 (𝐾 ∈ ℕ0 → (((((8 · 𝐾) + 5) − 1) / 2) − (⌊‘(((8 · 𝐾) + 5) / 4))) = (((4 · 𝐾) + 2) − ((2 · 𝐾) + 1)))
9970nn0cnd 12295 . . . 4 (𝐾 ∈ ℕ0 → (2 · 𝐾) ∈ ℂ)
10035, 23, 99, 14addsub4d 11379 . . 3 (𝐾 ∈ ℕ0 → (((4 · 𝐾) + 2) − ((2 · 𝐾) + 1)) = (((4 · 𝐾) − (2 · 𝐾)) + (2 − 1)))
101 2t2e4 12137 . . . . . . . . . 10 (2 · 2) = 4
102101eqcomi 2747 . . . . . . . . 9 4 = (2 · 2)
103102a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ0 → 4 = (2 · 2))
104103oveq1d 7290 . . . . . . 7 (𝐾 ∈ ℕ0 → (4 · 𝐾) = ((2 · 2) · 𝐾))
10523, 23, 24mulassd 10998 . . . . . . 7 (𝐾 ∈ ℕ0 → ((2 · 2) · 𝐾) = (2 · (2 · 𝐾)))
106104, 105eqtrd 2778 . . . . . 6 (𝐾 ∈ ℕ0 → (4 · 𝐾) = (2 · (2 · 𝐾)))
107106oveq1d 7290 . . . . 5 (𝐾 ∈ ℕ0 → ((4 · 𝐾) − (2 · 𝐾)) = ((2 · (2 · 𝐾)) − (2 · 𝐾)))
108 2txmxeqx 12113 . . . . . 6 ((2 · 𝐾) ∈ ℂ → ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾))
10999, 108syl 17 . . . . 5 (𝐾 ∈ ℕ0 → ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾))
110107, 109eqtrd 2778 . . . 4 (𝐾 ∈ ℕ0 → ((4 · 𝐾) − (2 · 𝐾)) = (2 · 𝐾))
111 2m1e1 12099 . . . . 5 (2 − 1) = 1
112111a1i 11 . . . 4 (𝐾 ∈ ℕ0 → (2 − 1) = 1)
113110, 112oveq12d 7293 . . 3 (𝐾 ∈ ℕ0 → (((4 · 𝐾) − (2 · 𝐾)) + (2 − 1)) = ((2 · 𝐾) + 1))
11498, 100, 1133eqtrd 2782 . 2 (𝐾 ∈ ℕ0 → (((((8 · 𝐾) + 5) − 1) / 2) − (⌊‘(((8 · 𝐾) + 5) / 4))) = ((2 · 𝐾) + 1))
1156, 114sylan9eqr 2800 1 ((𝐾 ∈ ℕ0𝑃 = ((8 · 𝐾) + 5)) → 𝑁 = ((2 · 𝐾) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  4c4 12030  5c5 12031  8c8 12034  0cn0 12233  cz 12319  +crp 12730  cfl 13510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fl 13512
This theorem is referenced by:  2lgslem3c1  26550
  Copyright terms: Public domain W3C validator