MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  5m1e4 Structured version   Visualization version   GIF version

Theorem 5m1e4 12372
Description: 5 - 1 = 4. (Contributed by AV, 6-Sep-2021.)
Assertion
Ref Expression
5m1e4 (5 − 1) = 4

Proof of Theorem 5m1e4
StepHypRef Expression
1 4cn 12327 . 2 4 ∈ ℂ
2 ax-1cn 11196 . 2 1 ∈ ℂ
3 df-5 12308 . 2 5 = (4 + 1)
41, 2, 3mvrraddi 11507 1 (5 − 1) = 4
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  (class class class)co 7420  1c1 11139  cmin 11474  4c4 12299  5c5 12300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11280  df-mnf 11281  df-ltxr 11283  df-sub 11476  df-2 12305  df-3 12306  df-4 12307  df-5 12308
This theorem is referenced by:  fldiv4p1lem1div2  13832  prmo5  17097  2lgslem3c  27330  lcm5un  41488  lcmineqlem23  41522  aks4d1p1p6  41544
  Copyright terms: Public domain W3C validator