Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 5t5e25 | Structured version Visualization version GIF version |
Description: 5 times 5 equals 25. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
5t5e25 | ⊢ (5 · 5) = ;25 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn0 11939 | . 2 ⊢ 5 ∈ ℕ0 | |
2 | 4nn0 11938 | . 2 ⊢ 4 ∈ ℕ0 | |
3 | df-5 11725 | . 2 ⊢ 5 = (4 + 1) | |
4 | 5t4e20 12224 | . . 3 ⊢ (5 · 4) = ;20 | |
5 | 2nn0 11936 | . . . 4 ⊢ 2 ∈ ℕ0 | |
6 | 5 | dec0u 12143 | . . 3 ⊢ (;10 · 2) = ;20 |
7 | 4, 6 | eqtr4i 2785 | . 2 ⊢ (5 · 4) = (;10 · 2) |
8 | dfdec10 12125 | . . 3 ⊢ ;25 = ((;10 · 2) + 5) | |
9 | 8 | eqcomi 2768 | . 2 ⊢ ((;10 · 2) + 5) = ;25 |
10 | 1, 2, 3, 7, 9 | 4t3lem 12219 | 1 ⊢ (5 · 5) = ;25 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7143 0cc0 10560 1c1 10561 + caddc 10563 · cmul 10565 2c2 11714 4c4 11716 5c5 11717 ;cdc 12122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5162 ax-nul 5169 ax-pow 5227 ax-pr 5291 ax-un 7452 ax-resscn 10617 ax-1cn 10618 ax-icn 10619 ax-addcl 10620 ax-addrcl 10621 ax-mulcl 10622 ax-mulrcl 10623 ax-mulcom 10624 ax-addass 10625 ax-mulass 10626 ax-distr 10627 ax-i2m1 10628 ax-1ne0 10629 ax-1rid 10630 ax-rnegex 10631 ax-rrecex 10632 ax-cnre 10633 ax-pre-lttri 10634 ax-pre-lttrn 10635 ax-pre-ltadd 10636 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-nel 3054 df-ral 3073 df-rex 3074 df-reu 3075 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-pss 3873 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-tp 4520 df-op 4522 df-uni 4792 df-iun 4878 df-br 5026 df-opab 5088 df-mpt 5106 df-tr 5132 df-id 5423 df-eprel 5428 df-po 5436 df-so 5437 df-fr 5476 df-we 5478 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-pred 6119 df-ord 6165 df-on 6166 df-lim 6167 df-suc 6168 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-riota 7101 df-ov 7146 df-oprab 7147 df-mpo 7148 df-om 7573 df-wrecs 7950 df-recs 8011 df-rdg 8049 df-er 8292 df-en 8521 df-dom 8522 df-sdom 8523 df-pnf 10700 df-mnf 10701 df-ltxr 10703 df-sub 10895 df-nn 11660 df-2 11722 df-3 11723 df-4 11724 df-5 11725 df-6 11726 df-7 11727 df-8 11728 df-9 11729 df-n0 11920 df-dec 12123 |
This theorem is referenced by: 2exp16 16467 prmlem1 16484 prmlem2 16496 1259lem1 16507 1259lem4 16510 2503lem1 16513 2503lem2 16514 4001lem1 16517 4001prm 16521 3lexlogpow2ineq2 39611 3lexlogpow5ineq5 39612 sqn5i 39800 resqrtvalex 40703 imsqrtvalex 40704 fmtno5lem2 44424 flsqrt5 44464 |
Copyright terms: Public domain | W3C validator |