MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem6 Structured version   Visualization version   GIF version

Theorem bposlem6 25235
Description: Lemma for bpos 25239. By using the various bounds at our disposal, arrive at an inequality that is false for 𝑁 large enough. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Wolf Lammen, 12-Sep-2020.)
Hypotheses
Ref Expression
bpos.1 (𝜑𝑁 ∈ (ℤ‘5))
bpos.2 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
bpos.3 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
bpos.4 𝐾 = (⌊‘((2 · 𝑁) / 3))
bpos.5 𝑀 = (⌊‘(√‘(2 · 𝑁)))
Assertion
Ref Expression
bposlem6 (𝜑 → ((4↑𝑁) / 𝑁) < (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
Distinct variable groups:   𝐹,𝑝   𝑛,𝑝,𝐾   𝑀,𝑝   𝑛,𝑁,𝑝   𝜑,𝑛,𝑝
Allowed substitution hints:   𝐹(𝑛)   𝑀(𝑛)

Proof of Theorem bposlem6
StepHypRef Expression
1 4nn 11389 . . . . 5 4 ∈ ℕ
2 5nn 11390 . . . . . . 7 5 ∈ ℕ
3 bpos.1 . . . . . . 7 (𝜑𝑁 ∈ (ℤ‘5))
4 eluznn 11961 . . . . . . 7 ((5 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘5)) → 𝑁 ∈ ℕ)
52, 3, 4sylancr 575 . . . . . 6 (𝜑𝑁 ∈ ℕ)
65nnnn0d 11553 . . . . 5 (𝜑𝑁 ∈ ℕ0)
7 nnexpcl 13080 . . . . 5 ((4 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (4↑𝑁) ∈ ℕ)
81, 6, 7sylancr 575 . . . 4 (𝜑 → (4↑𝑁) ∈ ℕ)
98nnred 11237 . . 3 (𝜑 → (4↑𝑁) ∈ ℝ)
109, 5nndivred 11271 . 2 (𝜑 → ((4↑𝑁) / 𝑁) ∈ ℝ)
11 fzctr 12659 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
126, 11syl 17 . . . 4 (𝜑𝑁 ∈ (0...(2 · 𝑁)))
13 bccl2 13314 . . . 4 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
1412, 13syl 17 . . 3 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℕ)
1514nnred 11237 . 2 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℝ)
16 2nn 11387 . . . . . . 7 2 ∈ ℕ
17 nnmulcl 11245 . . . . . . 7 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
1816, 5, 17sylancr 575 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℕ)
1918nnrpd 12073 . . . . 5 (𝜑 → (2 · 𝑁) ∈ ℝ+)
2018nnred 11237 . . . . . . . 8 (𝜑 → (2 · 𝑁) ∈ ℝ)
2119rpge0d 12079 . . . . . . . 8 (𝜑 → 0 ≤ (2 · 𝑁))
2220, 21resqrtcld 14364 . . . . . . 7 (𝜑 → (√‘(2 · 𝑁)) ∈ ℝ)
23 3nn 11388 . . . . . . 7 3 ∈ ℕ
24 nndivre 11258 . . . . . . 7 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 3 ∈ ℕ) → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
2522, 23, 24sylancl 574 . . . . . 6 (𝜑 → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
26 2re 11292 . . . . . 6 2 ∈ ℝ
27 readdcl 10221 . . . . . 6 ((((√‘(2 · 𝑁)) / 3) ∈ ℝ ∧ 2 ∈ ℝ) → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
2825, 26, 27sylancl 574 . . . . 5 (𝜑 → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
2919, 28rpcxpcld 24697 . . . 4 (𝜑 → ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) ∈ ℝ+)
3029rpred 12075 . . 3 (𝜑 → ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) ∈ ℝ)
31 2rp 12040 . . . . 5 2 ∈ ℝ+
32 nnmulcl 11245 . . . . . . . . 9 ((4 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (4 · 𝑁) ∈ ℕ)
331, 5, 32sylancr 575 . . . . . . . 8 (𝜑 → (4 · 𝑁) ∈ ℕ)
3433nnred 11237 . . . . . . 7 (𝜑 → (4 · 𝑁) ∈ ℝ)
35 nndivre 11258 . . . . . . 7 (((4 · 𝑁) ∈ ℝ ∧ 3 ∈ ℕ) → ((4 · 𝑁) / 3) ∈ ℝ)
3634, 23, 35sylancl 574 . . . . . 6 (𝜑 → ((4 · 𝑁) / 3) ∈ ℝ)
37 5re 11301 . . . . . 6 5 ∈ ℝ
38 resubcl 10547 . . . . . 6 ((((4 · 𝑁) / 3) ∈ ℝ ∧ 5 ∈ ℝ) → (((4 · 𝑁) / 3) − 5) ∈ ℝ)
3936, 37, 38sylancl 574 . . . . 5 (𝜑 → (((4 · 𝑁) / 3) − 5) ∈ ℝ)
40 rpcxpcl 24643 . . . . 5 ((2 ∈ ℝ+ ∧ (((4 · 𝑁) / 3) − 5) ∈ ℝ) → (2↑𝑐(((4 · 𝑁) / 3) − 5)) ∈ ℝ+)
4131, 39, 40sylancr 575 . . . 4 (𝜑 → (2↑𝑐(((4 · 𝑁) / 3) − 5)) ∈ ℝ+)
4241rpred 12075 . . 3 (𝜑 → (2↑𝑐(((4 · 𝑁) / 3) − 5)) ∈ ℝ)
4330, 42remulcld 10272 . 2 (𝜑 → (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))) ∈ ℝ)
44 df-5 11284 . . . . 5 5 = (4 + 1)
45 4z 11613 . . . . . 6 4 ∈ ℤ
46 uzid 11903 . . . . . 6 (4 ∈ ℤ → 4 ∈ (ℤ‘4))
47 peano2uz 11943 . . . . . 6 (4 ∈ (ℤ‘4) → (4 + 1) ∈ (ℤ‘4))
4845, 46, 47mp2b 10 . . . . 5 (4 + 1) ∈ (ℤ‘4)
4944, 48eqeltri 2846 . . . 4 5 ∈ (ℤ‘4)
50 eqid 2771 . . . . 5 (ℤ‘4) = (ℤ‘4)
5150uztrn2 11906 . . . 4 ((5 ∈ (ℤ‘4) ∧ 𝑁 ∈ (ℤ‘5)) → 𝑁 ∈ (ℤ‘4))
5249, 3, 51sylancr 575 . . 3 (𝜑𝑁 ∈ (ℤ‘4))
53 bclbnd 25226 . . 3 (𝑁 ∈ (ℤ‘4) → ((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁))
5452, 53syl 17 . 2 (𝜑 → ((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁))
55 bpos.3 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
56 id 22 . . . . . . . . . 10 (𝑛 ∈ ℙ → 𝑛 ∈ ℙ)
57 pccl 15761 . . . . . . . . . 10 ((𝑛 ∈ ℙ ∧ ((2 · 𝑁)C𝑁) ∈ ℕ) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
5856, 14, 57syl2anr 584 . . . . . . . . 9 ((𝜑𝑛 ∈ ℙ) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
5958ralrimiva 3115 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ℙ (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
6055, 59pcmptcl 15802 . . . . . . 7 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
6160simprd 483 . . . . . 6 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
62 bpos.2 . . . . . . . . 9 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
63 bpos.4 . . . . . . . . 9 𝐾 = (⌊‘((2 · 𝑁) / 3))
64 bpos.5 . . . . . . . . 9 𝑀 = (⌊‘(√‘(2 · 𝑁)))
653, 62, 55, 63, 64bposlem4 25233 . . . . . . . 8 (𝜑𝑀 ∈ (3...𝐾))
66 elfzuz 12545 . . . . . . . 8 (𝑀 ∈ (3...𝐾) → 𝑀 ∈ (ℤ‘3))
6765, 66syl 17 . . . . . . 7 (𝜑𝑀 ∈ (ℤ‘3))
68 eluznn 11961 . . . . . . 7 ((3 ∈ ℕ ∧ 𝑀 ∈ (ℤ‘3)) → 𝑀 ∈ ℕ)
6923, 67, 68sylancr 575 . . . . . 6 (𝜑𝑀 ∈ ℕ)
7061, 69ffvelrnd 6503 . . . . 5 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℕ)
7170nnred 11237 . . . 4 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℝ)
72 2z 11611 . . . . . . . . 9 2 ∈ ℤ
73 nndivre 11258 . . . . . . . . . . . 12 (((2 · 𝑁) ∈ ℝ ∧ 3 ∈ ℕ) → ((2 · 𝑁) / 3) ∈ ℝ)
7420, 23, 73sylancl 574 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) / 3) ∈ ℝ)
7574flcld 12807 . . . . . . . . . 10 (𝜑 → (⌊‘((2 · 𝑁) / 3)) ∈ ℤ)
7663, 75syl5eqel 2854 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
77 zmulcl 11628 . . . . . . . . 9 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 · 𝐾) ∈ ℤ)
7872, 76, 77sylancr 575 . . . . . . . 8 (𝜑 → (2 · 𝐾) ∈ ℤ)
792nnzi 11603 . . . . . . . 8 5 ∈ ℤ
80 zsubcl 11621 . . . . . . . 8 (((2 · 𝐾) ∈ ℤ ∧ 5 ∈ ℤ) → ((2 · 𝐾) − 5) ∈ ℤ)
8178, 79, 80sylancl 574 . . . . . . 7 (𝜑 → ((2 · 𝐾) − 5) ∈ ℤ)
8281zred 11684 . . . . . 6 (𝜑 → ((2 · 𝐾) − 5) ∈ ℝ)
83 rpcxpcl 24643 . . . . . 6 ((2 ∈ ℝ+ ∧ ((2 · 𝐾) − 5) ∈ ℝ) → (2↑𝑐((2 · 𝐾) − 5)) ∈ ℝ+)
8431, 82, 83sylancr 575 . . . . 5 (𝜑 → (2↑𝑐((2 · 𝐾) − 5)) ∈ ℝ+)
8584rpred 12075 . . . 4 (𝜑 → (2↑𝑐((2 · 𝐾) − 5)) ∈ ℝ)
8671, 85remulcld 10272 . . 3 (𝜑 → ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5))) ∈ ℝ)
873, 62, 55, 63bposlem3 25232 . . . 4 (𝜑 → (seq1( · , 𝐹)‘𝐾) = ((2 · 𝑁)C𝑁))
88 elfzuz3 12546 . . . . . . . . . 10 (𝑀 ∈ (3...𝐾) → 𝐾 ∈ (ℤ𝑀))
8965, 88syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ (ℤ𝑀))
9055, 59, 69, 89pcmptdvds 15805 . . . . . . . 8 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∥ (seq1( · , 𝐹)‘𝐾))
9170nnzd 11683 . . . . . . . . 9 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℤ)
9270nnne0d 11267 . . . . . . . . 9 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≠ 0)
93 uztrn 11905 . . . . . . . . . . . . 13 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑀 ∈ (ℤ‘3)) → 𝐾 ∈ (ℤ‘3))
9489, 67, 93syl2anc 573 . . . . . . . . . . . 12 (𝜑𝐾 ∈ (ℤ‘3))
95 eluznn 11961 . . . . . . . . . . . 12 ((3 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘3)) → 𝐾 ∈ ℕ)
9623, 94, 95sylancr 575 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℕ)
9761, 96ffvelrnd 6503 . . . . . . . . . 10 (𝜑 → (seq1( · , 𝐹)‘𝐾) ∈ ℕ)
9897nnzd 11683 . . . . . . . . 9 (𝜑 → (seq1( · , 𝐹)‘𝐾) ∈ ℤ)
99 dvdsval2 15192 . . . . . . . . 9 (((seq1( · , 𝐹)‘𝑀) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑀) ≠ 0 ∧ (seq1( · , 𝐹)‘𝐾) ∈ ℤ) → ((seq1( · , 𝐹)‘𝑀) ∥ (seq1( · , 𝐹)‘𝐾) ↔ ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∈ ℤ))
10091, 92, 98, 99syl3anc 1476 . . . . . . . 8 (𝜑 → ((seq1( · , 𝐹)‘𝑀) ∥ (seq1( · , 𝐹)‘𝐾) ↔ ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∈ ℤ))
10190, 100mpbid 222 . . . . . . 7 (𝜑 → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∈ ℤ)
102101zred 11684 . . . . . 6 (𝜑 → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∈ ℝ)
10369nnred 11237 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
10476zred 11684 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
105 eluzle 11901 . . . . . . . . . 10 (𝐾 ∈ (ℤ𝑀) → 𝑀𝐾)
10689, 105syl 17 . . . . . . . . 9 (𝜑𝑀𝐾)
107 efchtdvds 25106 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑀𝐾) → (exp‘(θ‘𝑀)) ∥ (exp‘(θ‘𝐾)))
108103, 104, 106, 107syl3anc 1476 . . . . . . . 8 (𝜑 → (exp‘(θ‘𝑀)) ∥ (exp‘(θ‘𝐾)))
109 efchtcl 25058 . . . . . . . . . . 11 (𝑀 ∈ ℝ → (exp‘(θ‘𝑀)) ∈ ℕ)
110103, 109syl 17 . . . . . . . . . 10 (𝜑 → (exp‘(θ‘𝑀)) ∈ ℕ)
111110nnzd 11683 . . . . . . . . 9 (𝜑 → (exp‘(θ‘𝑀)) ∈ ℤ)
112110nnne0d 11267 . . . . . . . . 9 (𝜑 → (exp‘(θ‘𝑀)) ≠ 0)
113 efchtcl 25058 . . . . . . . . . . 11 (𝐾 ∈ ℝ → (exp‘(θ‘𝐾)) ∈ ℕ)
114104, 113syl 17 . . . . . . . . . 10 (𝜑 → (exp‘(θ‘𝐾)) ∈ ℕ)
115114nnzd 11683 . . . . . . . . 9 (𝜑 → (exp‘(θ‘𝐾)) ∈ ℤ)
116 dvdsval2 15192 . . . . . . . . 9 (((exp‘(θ‘𝑀)) ∈ ℤ ∧ (exp‘(θ‘𝑀)) ≠ 0 ∧ (exp‘(θ‘𝐾)) ∈ ℤ) → ((exp‘(θ‘𝑀)) ∥ (exp‘(θ‘𝐾)) ↔ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℤ))
117111, 112, 115, 116syl3anc 1476 . . . . . . . 8 (𝜑 → ((exp‘(θ‘𝑀)) ∥ (exp‘(θ‘𝐾)) ↔ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℤ))
118108, 117mpbid 222 . . . . . . 7 (𝜑 → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℤ)
119118zred 11684 . . . . . 6 (𝜑 → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℝ)
120 prmz 15596 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
121 fllt 12815 . . . . . . . . . . . . . . . . . 18 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 𝑝 ∈ ℤ) → ((√‘(2 · 𝑁)) < 𝑝 ↔ (⌊‘(√‘(2 · 𝑁))) < 𝑝))
12222, 120, 121syl2an 583 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → ((√‘(2 · 𝑁)) < 𝑝 ↔ (⌊‘(√‘(2 · 𝑁))) < 𝑝))
12364breq1i 4793 . . . . . . . . . . . . . . . . 17 (𝑀 < 𝑝 ↔ (⌊‘(√‘(2 · 𝑁))) < 𝑝)
124122, 123syl6bbr 278 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → ((√‘(2 · 𝑁)) < 𝑝𝑀 < 𝑝))
125120zred 11684 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
126 ltnle 10319 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝑀 < 𝑝 ↔ ¬ 𝑝𝑀))
127103, 125, 126syl2an 583 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → (𝑀 < 𝑝 ↔ ¬ 𝑝𝑀))
128124, 127bitrd 268 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → ((√‘(2 · 𝑁)) < 𝑝 ↔ ¬ 𝑝𝑀))
129 bposlem1 25230 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
1305, 129sylan 569 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
131125adantl 467 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℝ)
132 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
133 pccl 15761 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ ((2 · 𝑁)C𝑁) ∈ ℕ) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
134132, 14, 133syl2anr 584 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
135131, 134reexpcld 13232 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ)
13620adantr 466 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ ℙ) → (2 · 𝑁) ∈ ℝ)
137131resqcld 13242 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ ℙ) → (𝑝↑2) ∈ ℝ)
138 lelttr 10330 . . . . . . . . . . . . . . . . . . . 20 (((𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ (𝑝↑2) ∈ ℝ) → (((𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁) ∧ (2 · 𝑁) < (𝑝↑2)) → (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) < (𝑝↑2)))
139135, 136, 137, 138syl3anc 1476 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ℙ) → (((𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁) ∧ (2 · 𝑁) < (𝑝↑2)) → (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) < (𝑝↑2)))
140130, 139mpand 675 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ ℙ) → ((2 · 𝑁) < (𝑝↑2) → (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) < (𝑝↑2)))
141 resqrtth 14204 . . . . . . . . . . . . . . . . . . . . 21 (((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁)) → ((√‘(2 · 𝑁))↑2) = (2 · 𝑁))
14220, 21, 141syl2anc 573 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((√‘(2 · 𝑁))↑2) = (2 · 𝑁))
143142breq1d 4796 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((√‘(2 · 𝑁))↑2) < (𝑝↑2) ↔ (2 · 𝑁) < (𝑝↑2)))
144143adantr 466 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ ℙ) → (((√‘(2 · 𝑁))↑2) < (𝑝↑2) ↔ (2 · 𝑁) < (𝑝↑2)))
145134nn0zd 11682 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ)
14672a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ℙ) → 2 ∈ ℤ)
147 prmgt1 15616 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℙ → 1 < 𝑝)
148147adantl 467 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ℙ) → 1 < 𝑝)
149131, 145, 146, 148ltexp2d 13245 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ ℙ) → ((𝑝 pCnt ((2 · 𝑁)C𝑁)) < 2 ↔ (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) < (𝑝↑2)))
150140, 144, 1493imtr4d 283 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → (((√‘(2 · 𝑁))↑2) < (𝑝↑2) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) < 2))
151 df-2 11281 . . . . . . . . . . . . . . . . . 18 2 = (1 + 1)
152151breq2i 4794 . . . . . . . . . . . . . . . . 17 ((𝑝 pCnt ((2 · 𝑁)C𝑁)) < 2 ↔ (𝑝 pCnt ((2 · 𝑁)C𝑁)) < (1 + 1))
153150, 152syl6ib 241 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → (((√‘(2 · 𝑁))↑2) < (𝑝↑2) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) < (1 + 1)))
15422adantr 466 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → (√‘(2 · 𝑁)) ∈ ℝ)
15520, 21sqrtge0d 14367 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (√‘(2 · 𝑁)))
156155adantr 466 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → 0 ≤ (√‘(2 · 𝑁)))
157 prmnn 15595 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
158157nnrpd 12073 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ+)
159158rpge0d 12079 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → 0 ≤ 𝑝)
160159adantl 467 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → 0 ≤ 𝑝)
161154, 131, 156, 160lt2sqd 13250 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → ((√‘(2 · 𝑁)) < 𝑝 ↔ ((√‘(2 · 𝑁))↑2) < (𝑝↑2)))
162 1z 11609 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
163 zleltp1 11630 . . . . . . . . . . . . . . . . 17 (((𝑝 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑝 pCnt ((2 · 𝑁)C𝑁)) ≤ 1 ↔ (𝑝 pCnt ((2 · 𝑁)C𝑁)) < (1 + 1)))
164145, 162, 163sylancl 574 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → ((𝑝 pCnt ((2 · 𝑁)C𝑁)) ≤ 1 ↔ (𝑝 pCnt ((2 · 𝑁)C𝑁)) < (1 + 1)))
165153, 161, 1643imtr4d 283 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → ((√‘(2 · 𝑁)) < 𝑝 → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ≤ 1))
166128, 165sylbird 250 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℙ) → (¬ 𝑝𝑀 → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ≤ 1))
167166imp 393 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑀) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ≤ 1)
168167adantrl 695 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝐾 ∧ ¬ 𝑝𝑀)) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ≤ 1)
169 iftrue 4231 . . . . . . . . . . . . 13 ((𝑝𝐾 ∧ ¬ 𝑝𝑀) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
170169adantl 467 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝐾 ∧ ¬ 𝑝𝑀)) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
171 iftrue 4231 . . . . . . . . . . . . 13 ((𝑝𝐾 ∧ ¬ 𝑝𝑀) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0) = 1)
172171adantl 467 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝐾 ∧ ¬ 𝑝𝑀)) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0) = 1)
173168, 170, 1723brtr4d 4818 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝐾 ∧ ¬ 𝑝𝑀)) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) ≤ if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0))
174 0le0 11312 . . . . . . . . . . . . 13 0 ≤ 0
175 iffalse 4234 . . . . . . . . . . . . . 14 (¬ (𝑝𝐾 ∧ ¬ 𝑝𝑀) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = 0)
176 iffalse 4234 . . . . . . . . . . . . . 14 (¬ (𝑝𝐾 ∧ ¬ 𝑝𝑀) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0) = 0)
177175, 176breq12d 4799 . . . . . . . . . . . . 13 (¬ (𝑝𝐾 ∧ ¬ 𝑝𝑀) → (if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) ≤ if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0) ↔ 0 ≤ 0))
178174, 177mpbiri 248 . . . . . . . . . . . 12 (¬ (𝑝𝐾 ∧ ¬ 𝑝𝑀) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) ≤ if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0))
179178adantl 467 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ ¬ (𝑝𝐾 ∧ ¬ 𝑝𝑀)) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) ≤ if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0))
180173, 179pm2.61dan 814 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) ≤ if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0))
18159adantr 466 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → ∀𝑛 ∈ ℙ (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
18269adantr 466 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → 𝑀 ∈ ℕ)
183 simpr 471 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
184 oveq1 6800 . . . . . . . . . . 11 (𝑛 = 𝑝 → (𝑛 pCnt ((2 · 𝑁)C𝑁)) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
18589adantr 466 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → 𝐾 ∈ (ℤ𝑀))
18655, 181, 182, 183, 184, 185pcmpt2 15804 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀))) = if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0))
187 eqid 2771 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
188187prmorcht 25125 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℕ → (exp‘(θ‘𝐾)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝐾))
18996, 188syl 17 . . . . . . . . . . . . . 14 (𝜑 → (exp‘(θ‘𝐾)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝐾))
190187prmorcht 25125 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (exp‘(θ‘𝑀)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑀))
19169, 190syl 17 . . . . . . . . . . . . . 14 (𝜑 → (exp‘(θ‘𝑀)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑀))
192189, 191oveq12d 6811 . . . . . . . . . . . . 13 (𝜑 → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝐾) / (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑀)))
193192adantr 466 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝐾) / (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑀)))
194193oveq2d 6809 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))) = (𝑝 pCnt ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝐾) / (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑀))))
195 nncn 11230 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
196195exp1d 13210 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛↑1) = 𝑛)
197196ifeq1d 4243 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → if(𝑛 ∈ ℙ, (𝑛↑1), 1) = if(𝑛 ∈ ℙ, 𝑛, 1))
198197mpteq2ia 4874 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑1), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
199198eqcomi 2780 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑1), 1))
200 1nn0 11510 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
201200a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℙ) → 1 ∈ ℕ0)
202201ralrimiva 3115 . . . . . . . . . . . . 13 (𝜑 → ∀𝑛 ∈ ℙ 1 ∈ ℕ0)
203202adantr 466 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → ∀𝑛 ∈ ℙ 1 ∈ ℕ0)
204 eqidd 2772 . . . . . . . . . . . 12 (𝑛 = 𝑝 → 1 = 1)
205199, 203, 182, 183, 204, 185pcmpt2 15804 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝐾) / (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑀))) = if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0))
206194, 205eqtrd 2805 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))) = if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0))
207180, 186, 2063brtr4d 4818 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀))) ≤ (𝑝 pCnt ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))))
208207ralrimiva 3115 . . . . . . . 8 (𝜑 → ∀𝑝 ∈ ℙ (𝑝 pCnt ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀))) ≤ (𝑝 pCnt ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))))
209 pc2dvds 15790 . . . . . . . . 9 ((((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∈ ℤ ∧ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℤ) → (((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∥ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀))) ≤ (𝑝 pCnt ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))))))
210101, 118, 209syl2anc 573 . . . . . . . 8 (𝜑 → (((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∥ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀))) ≤ (𝑝 pCnt ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))))))
211208, 210mpbird 247 . . . . . . 7 (𝜑 → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∥ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))))
212114nnred 11237 . . . . . . . . . 10 (𝜑 → (exp‘(θ‘𝐾)) ∈ ℝ)
213110nnred 11237 . . . . . . . . . 10 (𝜑 → (exp‘(θ‘𝑀)) ∈ ℝ)
214114nngt0d 11266 . . . . . . . . . 10 (𝜑 → 0 < (exp‘(θ‘𝐾)))
215110nngt0d 11266 . . . . . . . . . 10 (𝜑 → 0 < (exp‘(θ‘𝑀)))
216212, 213, 214, 215divgt0d 11161 . . . . . . . . 9 (𝜑 → 0 < ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))))
217 elnnz 11589 . . . . . . . . 9 (((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℕ ↔ (((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℤ ∧ 0 < ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))))
218118, 216, 217sylanbrc 572 . . . . . . . 8 (𝜑 → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℕ)
219 dvdsle 15241 . . . . . . . 8 ((((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∈ ℤ ∧ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℕ) → (((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∥ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ≤ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))))
220101, 218, 219syl2anc 573 . . . . . . 7 (𝜑 → (((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∥ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ≤ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))))
221211, 220mpd 15 . . . . . 6 (𝜑 → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ≤ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))))
222 nndivre 11258 . . . . . . . 8 (((exp‘(θ‘𝐾)) ∈ ℝ ∧ 4 ∈ ℕ) → ((exp‘(θ‘𝐾)) / 4) ∈ ℝ)
223212, 1, 222sylancl 574 . . . . . . 7 (𝜑 → ((exp‘(θ‘𝐾)) / 4) ∈ ℝ)
224 4re 11299 . . . . . . . . . 10 4 ∈ ℝ
225224a1i 11 . . . . . . . . 9 (𝜑 → 4 ∈ ℝ)
226 6re 11303 . . . . . . . . . 10 6 ∈ ℝ
227226a1i 11 . . . . . . . . 9 (𝜑 → 6 ∈ ℝ)
228 4lt6 11407 . . . . . . . . . 10 4 < 6
229228a1i 11 . . . . . . . . 9 (𝜑 → 4 < 6)
230 cht3 25120 . . . . . . . . . . . 12 (θ‘3) = (log‘6)
231230fveq2i 6335 . . . . . . . . . . 11 (exp‘(θ‘3)) = (exp‘(log‘6))
232 6pos 11321 . . . . . . . . . . . . 13 0 < 6
233226, 232elrpii 12038 . . . . . . . . . . . 12 6 ∈ ℝ+
234 reeflog 24548 . . . . . . . . . . . 12 (6 ∈ ℝ+ → (exp‘(log‘6)) = 6)
235233, 234ax-mp 5 . . . . . . . . . . 11 (exp‘(log‘6)) = 6
236231, 235eqtri 2793 . . . . . . . . . 10 (exp‘(θ‘3)) = 6
237 3re 11296 . . . . . . . . . . . . 13 3 ∈ ℝ
238237a1i 11 . . . . . . . . . . . 12 (𝜑 → 3 ∈ ℝ)
239 eluzle 11901 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘3) → 3 ≤ 𝑀)
24067, 239syl 17 . . . . . . . . . . . 12 (𝜑 → 3 ≤ 𝑀)
241 chtwordi 25103 . . . . . . . . . . . 12 ((3 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 3 ≤ 𝑀) → (θ‘3) ≤ (θ‘𝑀))
242238, 103, 240, 241syl3anc 1476 . . . . . . . . . . 11 (𝜑 → (θ‘3) ≤ (θ‘𝑀))
243 chtcl 25056 . . . . . . . . . . . . 13 (3 ∈ ℝ → (θ‘3) ∈ ℝ)
244237, 243ax-mp 5 . . . . . . . . . . . 12 (θ‘3) ∈ ℝ
245 chtcl 25056 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ → (θ‘𝑀) ∈ ℝ)
246103, 245syl 17 . . . . . . . . . . . 12 (𝜑 → (θ‘𝑀) ∈ ℝ)
247 efle 15054 . . . . . . . . . . . 12 (((θ‘3) ∈ ℝ ∧ (θ‘𝑀) ∈ ℝ) → ((θ‘3) ≤ (θ‘𝑀) ↔ (exp‘(θ‘3)) ≤ (exp‘(θ‘𝑀))))
248244, 246, 247sylancr 575 . . . . . . . . . . 11 (𝜑 → ((θ‘3) ≤ (θ‘𝑀) ↔ (exp‘(θ‘3)) ≤ (exp‘(θ‘𝑀))))
249242, 248mpbid 222 . . . . . . . . . 10 (𝜑 → (exp‘(θ‘3)) ≤ (exp‘(θ‘𝑀)))
250236, 249syl5eqbrr 4822 . . . . . . . . 9 (𝜑 → 6 ≤ (exp‘(θ‘𝑀)))
251225, 227, 213, 229, 250ltletrd 10399 . . . . . . . 8 (𝜑 → 4 < (exp‘(θ‘𝑀)))
252 4pos 11318 . . . . . . . . . 10 0 < 4
253252a1i 11 . . . . . . . . 9 (𝜑 → 0 < 4)
254 ltdiv2 11111 . . . . . . . . 9 (((4 ∈ ℝ ∧ 0 < 4) ∧ ((exp‘(θ‘𝑀)) ∈ ℝ ∧ 0 < (exp‘(θ‘𝑀))) ∧ ((exp‘(θ‘𝐾)) ∈ ℝ ∧ 0 < (exp‘(θ‘𝐾)))) → (4 < (exp‘(θ‘𝑀)) ↔ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) < ((exp‘(θ‘𝐾)) / 4)))
255225, 253, 213, 215, 212, 214, 254syl222anc 1492 . . . . . . . 8 (𝜑 → (4 < (exp‘(θ‘𝑀)) ↔ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) < ((exp‘(θ‘𝐾)) / 4)))
256251, 255mpbid 222 . . . . . . 7 (𝜑 → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) < ((exp‘(θ‘𝐾)) / 4))
25726a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℝ)
258 2lt3 11397 . . . . . . . . . . . . . 14 2 < 3
259258a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 < 3)
260238, 103, 104, 240, 106letrd 10396 . . . . . . . . . . . . 13 (𝜑 → 3 ≤ 𝐾)
261257, 238, 104, 259, 260ltletrd 10399 . . . . . . . . . . . 12 (𝜑 → 2 < 𝐾)
262 chtub 25158 . . . . . . . . . . . 12 ((𝐾 ∈ ℝ ∧ 2 < 𝐾) → (θ‘𝐾) < ((log‘2) · ((2 · 𝐾) − 3)))
263104, 261, 262syl2anc 573 . . . . . . . . . . 11 (𝜑 → (θ‘𝐾) < ((log‘2) · ((2 · 𝐾) − 3)))
264 chtcl 25056 . . . . . . . . . . . . 13 (𝐾 ∈ ℝ → (θ‘𝐾) ∈ ℝ)
265104, 264syl 17 . . . . . . . . . . . 12 (𝜑 → (θ‘𝐾) ∈ ℝ)
266 relogcl 24543 . . . . . . . . . . . . . 14 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
26731, 266ax-mp 5 . . . . . . . . . . . . 13 (log‘2) ∈ ℝ
26823nnzi 11603 . . . . . . . . . . . . . . 15 3 ∈ ℤ
269 zsubcl 11621 . . . . . . . . . . . . . . 15 (((2 · 𝐾) ∈ ℤ ∧ 3 ∈ ℤ) → ((2 · 𝐾) − 3) ∈ ℤ)
27078, 268, 269sylancl 574 . . . . . . . . . . . . . 14 (𝜑 → ((2 · 𝐾) − 3) ∈ ℤ)
271270zred 11684 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝐾) − 3) ∈ ℝ)
272 remulcl 10223 . . . . . . . . . . . . 13 (((log‘2) ∈ ℝ ∧ ((2 · 𝐾) − 3) ∈ ℝ) → ((log‘2) · ((2 · 𝐾) − 3)) ∈ ℝ)
273267, 271, 272sylancr 575 . . . . . . . . . . . 12 (𝜑 → ((log‘2) · ((2 · 𝐾) − 3)) ∈ ℝ)
274 eflt 15053 . . . . . . . . . . . 12 (((θ‘𝐾) ∈ ℝ ∧ ((log‘2) · ((2 · 𝐾) − 3)) ∈ ℝ) → ((θ‘𝐾) < ((log‘2) · ((2 · 𝐾) − 3)) ↔ (exp‘(θ‘𝐾)) < (exp‘((log‘2) · ((2 · 𝐾) − 3)))))
275265, 273, 274syl2anc 573 . . . . . . . . . . 11 (𝜑 → ((θ‘𝐾) < ((log‘2) · ((2 · 𝐾) − 3)) ↔ (exp‘(θ‘𝐾)) < (exp‘((log‘2) · ((2 · 𝐾) − 3)))))
276263, 275mpbid 222 . . . . . . . . . 10 (𝜑 → (exp‘(θ‘𝐾)) < (exp‘((log‘2) · ((2 · 𝐾) − 3))))
277 reexplog 24562 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ ((2 · 𝐾) − 3) ∈ ℤ) → (2↑((2 · 𝐾) − 3)) = (exp‘(((2 · 𝐾) − 3) · (log‘2))))
27831, 270, 277sylancr 575 . . . . . . . . . . 11 (𝜑 → (2↑((2 · 𝐾) − 3)) = (exp‘(((2 · 𝐾) − 3) · (log‘2))))
279270zcnd 11685 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝐾) − 3) ∈ ℂ)
280267recni 10254 . . . . . . . . . . . . 13 (log‘2) ∈ ℂ
281 mulcom 10224 . . . . . . . . . . . . 13 ((((2 · 𝐾) − 3) ∈ ℂ ∧ (log‘2) ∈ ℂ) → (((2 · 𝐾) − 3) · (log‘2)) = ((log‘2) · ((2 · 𝐾) − 3)))
282279, 280, 281sylancl 574 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝐾) − 3) · (log‘2)) = ((log‘2) · ((2 · 𝐾) − 3)))
283282fveq2d 6336 . . . . . . . . . . 11 (𝜑 → (exp‘(((2 · 𝐾) − 3) · (log‘2))) = (exp‘((log‘2) · ((2 · 𝐾) − 3))))
284278, 283eqtrd 2805 . . . . . . . . . 10 (𝜑 → (2↑((2 · 𝐾) − 3)) = (exp‘((log‘2) · ((2 · 𝐾) − 3))))
285276, 284breqtrrd 4814 . . . . . . . . 9 (𝜑 → (exp‘(θ‘𝐾)) < (2↑((2 · 𝐾) − 3)))
286 3p2e5 11362 . . . . . . . . . . . . . . . 16 (3 + 2) = 5
287286oveq1i 6803 . . . . . . . . . . . . . . 15 ((3 + 2) − 2) = (5 − 2)
288 3cn 11297 . . . . . . . . . . . . . . . 16 3 ∈ ℂ
289 2cn 11293 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
290288, 289pncan3oi 10499 . . . . . . . . . . . . . . 15 ((3 + 2) − 2) = 3
291287, 290eqtr3i 2795 . . . . . . . . . . . . . 14 (5 − 2) = 3
292291oveq2i 6804 . . . . . . . . . . . . 13 ((2 · 𝐾) − (5 − 2)) = ((2 · 𝐾) − 3)
29378zcnd 11685 . . . . . . . . . . . . . 14 (𝜑 → (2 · 𝐾) ∈ ℂ)
294 5cn 11302 . . . . . . . . . . . . . . 15 5 ∈ ℂ
295 subsub 10513 . . . . . . . . . . . . . . 15 (((2 · 𝐾) ∈ ℂ ∧ 5 ∈ ℂ ∧ 2 ∈ ℂ) → ((2 · 𝐾) − (5 − 2)) = (((2 · 𝐾) − 5) + 2))
296294, 289, 295mp3an23 1564 . . . . . . . . . . . . . 14 ((2 · 𝐾) ∈ ℂ → ((2 · 𝐾) − (5 − 2)) = (((2 · 𝐾) − 5) + 2))
297293, 296syl 17 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝐾) − (5 − 2)) = (((2 · 𝐾) − 5) + 2))
298292, 297syl5eqr 2819 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝐾) − 3) = (((2 · 𝐾) − 5) + 2))
299298oveq2d 6809 . . . . . . . . . . 11 (𝜑 → (2↑𝑐((2 · 𝐾) − 3)) = (2↑𝑐(((2 · 𝐾) − 5) + 2)))
300 2ne0 11315 . . . . . . . . . . . . 13 2 ≠ 0
301 cxpexpz 24634 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ ((2 · 𝐾) − 3) ∈ ℤ) → (2↑𝑐((2 · 𝐾) − 3)) = (2↑((2 · 𝐾) − 3)))
302289, 300, 301mp3an12 1562 . . . . . . . . . . . 12 (((2 · 𝐾) − 3) ∈ ℤ → (2↑𝑐((2 · 𝐾) − 3)) = (2↑((2 · 𝐾) − 3)))
303270, 302syl 17 . . . . . . . . . . 11 (𝜑 → (2↑𝑐((2 · 𝐾) − 3)) = (2↑((2 · 𝐾) − 3)))
30481zcnd 11685 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝐾) − 5) ∈ ℂ)
305 2cnne0 11444 . . . . . . . . . . . . 13 (2 ∈ ℂ ∧ 2 ≠ 0)
306 cxpadd 24646 . . . . . . . . . . . . 13 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2 · 𝐾) − 5) ∈ ℂ ∧ 2 ∈ ℂ) → (2↑𝑐(((2 · 𝐾) − 5) + 2)) = ((2↑𝑐((2 · 𝐾) − 5)) · (2↑𝑐2)))
307305, 289, 306mp3an13 1563 . . . . . . . . . . . 12 (((2 · 𝐾) − 5) ∈ ℂ → (2↑𝑐(((2 · 𝐾) − 5) + 2)) = ((2↑𝑐((2 · 𝐾) − 5)) · (2↑𝑐2)))
308304, 307syl 17 . . . . . . . . . . 11 (𝜑 → (2↑𝑐(((2 · 𝐾) − 5) + 2)) = ((2↑𝑐((2 · 𝐾) − 5)) · (2↑𝑐2)))
309299, 303, 3083eqtr3d 2813 . . . . . . . . . 10 (𝜑 → (2↑((2 · 𝐾) − 3)) = ((2↑𝑐((2 · 𝐾) − 5)) · (2↑𝑐2)))
310 2nn0 11511 . . . . . . . . . . . . 13 2 ∈ ℕ0
311 cxpexp 24635 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 2 ∈ ℕ0) → (2↑𝑐2) = (2↑2))
312289, 310, 311mp2an 672 . . . . . . . . . . . 12 (2↑𝑐2) = (2↑2)
313 sq2 13167 . . . . . . . . . . . 12 (2↑2) = 4
314312, 313eqtri 2793 . . . . . . . . . . 11 (2↑𝑐2) = 4
315314oveq2i 6804 . . . . . . . . . 10 ((2↑𝑐((2 · 𝐾) − 5)) · (2↑𝑐2)) = ((2↑𝑐((2 · 𝐾) − 5)) · 4)
316309, 315syl6eq 2821 . . . . . . . . 9 (𝜑 → (2↑((2 · 𝐾) − 3)) = ((2↑𝑐((2 · 𝐾) − 5)) · 4))
317285, 316breqtrd 4812 . . . . . . . 8 (𝜑 → (exp‘(θ‘𝐾)) < ((2↑𝑐((2 · 𝐾) − 5)) · 4))
318224, 252pm3.2i 447 . . . . . . . . . 10 (4 ∈ ℝ ∧ 0 < 4)
319318a1i 11 . . . . . . . . 9 (𝜑 → (4 ∈ ℝ ∧ 0 < 4))
320 ltdivmul2 11102 . . . . . . . . 9 (((exp‘(θ‘𝐾)) ∈ ℝ ∧ (2↑𝑐((2 · 𝐾) − 5)) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → (((exp‘(θ‘𝐾)) / 4) < (2↑𝑐((2 · 𝐾) − 5)) ↔ (exp‘(θ‘𝐾)) < ((2↑𝑐((2 · 𝐾) − 5)) · 4)))
321212, 85, 319, 320syl3anc 1476 . . . . . . . 8 (𝜑 → (((exp‘(θ‘𝐾)) / 4) < (2↑𝑐((2 · 𝐾) − 5)) ↔ (exp‘(θ‘𝐾)) < ((2↑𝑐((2 · 𝐾) − 5)) · 4)))
322317, 321mpbird 247 . . . . . . 7 (𝜑 → ((exp‘(θ‘𝐾)) / 4) < (2↑𝑐((2 · 𝐾) − 5)))
323119, 223, 85, 256, 322lttrd 10400 . . . . . 6 (𝜑 → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) < (2↑𝑐((2 · 𝐾) − 5)))
324102, 119, 85, 221, 323lelttrd 10397 . . . . 5 (𝜑 → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) < (2↑𝑐((2 · 𝐾) − 5)))
32597nnred 11237 . . . . . 6 (𝜑 → (seq1( · , 𝐹)‘𝐾) ∈ ℝ)
326 nnre 11229 . . . . . . . 8 ((seq1( · , 𝐹)‘𝑀) ∈ ℕ → (seq1( · , 𝐹)‘𝑀) ∈ ℝ)
327 nngt0 11251 . . . . . . . 8 ((seq1( · , 𝐹)‘𝑀) ∈ ℕ → 0 < (seq1( · , 𝐹)‘𝑀))
328326, 327jca 501 . . . . . . 7 ((seq1( · , 𝐹)‘𝑀) ∈ ℕ → ((seq1( · , 𝐹)‘𝑀) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑀)))
32970, 328syl 17 . . . . . 6 (𝜑 → ((seq1( · , 𝐹)‘𝑀) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑀)))
330 ltdivmul 11100 . . . . . 6 (((seq1( · , 𝐹)‘𝐾) ∈ ℝ ∧ (2↑𝑐((2 · 𝐾) − 5)) ∈ ℝ ∧ ((seq1( · , 𝐹)‘𝑀) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑀))) → (((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) < (2↑𝑐((2 · 𝐾) − 5)) ↔ (seq1( · , 𝐹)‘𝐾) < ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5)))))
331325, 85, 329, 330syl3anc 1476 . . . . 5 (𝜑 → (((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) < (2↑𝑐((2 · 𝐾) − 5)) ↔ (seq1( · , 𝐹)‘𝐾) < ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5)))))
332324, 331mpbid 222 . . . 4 (𝜑 → (seq1( · , 𝐹)‘𝐾) < ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5))))
33387, 332eqbrtrrd 4810 . . 3 (𝜑 → ((2 · 𝑁)C𝑁) < ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5))))
33430, 85remulcld 10272 . . . 4 (𝜑 → (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐((2 · 𝐾) − 5))) ∈ ℝ)
3353, 62, 55, 63, 64bposlem5 25234 . . . . 5 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)))
33671, 30, 84lemul1d 12118 . . . . 5 (𝜑 → ((seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) ↔ ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5))) ≤ (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐((2 · 𝐾) − 5)))))
337335, 336mpbid 222 . . . 4 (𝜑 → ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5))) ≤ (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐((2 · 𝐾) − 5))))
33878zred 11684 . . . . . . 7 (𝜑 → (2 · 𝐾) ∈ ℝ)
33937a1i 11 . . . . . . 7 (𝜑 → 5 ∈ ℝ)
340 flle 12808 . . . . . . . . . . 11 (((2 · 𝑁) / 3) ∈ ℝ → (⌊‘((2 · 𝑁) / 3)) ≤ ((2 · 𝑁) / 3))
34174, 340syl 17 . . . . . . . . . 10 (𝜑 → (⌊‘((2 · 𝑁) / 3)) ≤ ((2 · 𝑁) / 3))
34263, 341syl5eqbr 4821 . . . . . . . . 9 (𝜑𝐾 ≤ ((2 · 𝑁) / 3))
343 2pos 11314 . . . . . . . . . . . 12 0 < 2
34426, 343pm3.2i 447 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
345344a1i 11 . . . . . . . . . 10 (𝜑 → (2 ∈ ℝ ∧ 0 < 2))
346 lemul2 11078 . . . . . . . . . 10 ((𝐾 ∈ ℝ ∧ ((2 · 𝑁) / 3) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐾 ≤ ((2 · 𝑁) / 3) ↔ (2 · 𝐾) ≤ (2 · ((2 · 𝑁) / 3))))
347104, 74, 345, 346syl3anc 1476 . . . . . . . . 9 (𝜑 → (𝐾 ≤ ((2 · 𝑁) / 3) ↔ (2 · 𝐾) ≤ (2 · ((2 · 𝑁) / 3))))
348342, 347mpbid 222 . . . . . . . 8 (𝜑 → (2 · 𝐾) ≤ (2 · ((2 · 𝑁) / 3)))
34918nncnd 11238 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℂ)
350 3ne0 11317 . . . . . . . . . . . 12 3 ≠ 0
351288, 350pm3.2i 447 . . . . . . . . . . 11 (3 ∈ ℂ ∧ 3 ≠ 0)
352 divass 10905 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (2 · 𝑁) ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((2 · (2 · 𝑁)) / 3) = (2 · ((2 · 𝑁) / 3)))
353289, 351, 352mp3an13 1563 . . . . . . . . . 10 ((2 · 𝑁) ∈ ℂ → ((2 · (2 · 𝑁)) / 3) = (2 · ((2 · 𝑁) / 3)))
354349, 353syl 17 . . . . . . . . 9 (𝜑 → ((2 · (2 · 𝑁)) / 3) = (2 · ((2 · 𝑁) / 3)))
355 2t2e4 11379 . . . . . . . . . . . 12 (2 · 2) = 4
356355oveq1i 6803 . . . . . . . . . . 11 ((2 · 2) · 𝑁) = (4 · 𝑁)
3575nncnd 11238 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
358 mulass 10226 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((2 · 2) · 𝑁) = (2 · (2 · 𝑁)))
359289, 289, 358mp3an12 1562 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → ((2 · 2) · 𝑁) = (2 · (2 · 𝑁)))
360357, 359syl 17 . . . . . . . . . . 11 (𝜑 → ((2 · 2) · 𝑁) = (2 · (2 · 𝑁)))
361356, 360syl5reqr 2820 . . . . . . . . . 10 (𝜑 → (2 · (2 · 𝑁)) = (4 · 𝑁))
362361oveq1d 6808 . . . . . . . . 9 (𝜑 → ((2 · (2 · 𝑁)) / 3) = ((4 · 𝑁) / 3))
363354, 362eqtr3d 2807 . . . . . . . 8 (𝜑 → (2 · ((2 · 𝑁) / 3)) = ((4 · 𝑁) / 3))
364348, 363breqtrd 4812 . . . . . . 7 (𝜑 → (2 · 𝐾) ≤ ((4 · 𝑁) / 3))
365338, 36, 339, 364lesub1dd 10845 . . . . . 6 (𝜑 → ((2 · 𝐾) − 5) ≤ (((4 · 𝑁) / 3) − 5))
366 1lt2 11396 . . . . . . . 8 1 < 2
367366a1i 11 . . . . . . 7 (𝜑 → 1 < 2)
368257, 367, 82, 39cxpled 24687 . . . . . 6 (𝜑 → (((2 · 𝐾) − 5) ≤ (((4 · 𝑁) / 3) − 5) ↔ (2↑𝑐((2 · 𝐾) − 5)) ≤ (2↑𝑐(((4 · 𝑁) / 3) − 5))))
369365, 368mpbid 222 . . . . 5 (𝜑 → (2↑𝑐((2 · 𝐾) − 5)) ≤ (2↑𝑐(((4 · 𝑁) / 3) − 5)))
37085, 42, 29lemul2d 12119 . . . . 5 (𝜑 → ((2↑𝑐((2 · 𝐾) − 5)) ≤ (2↑𝑐(((4 · 𝑁) / 3) − 5)) ↔ (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐((2 · 𝐾) − 5))) ≤ (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5)))))
371369, 370mpbid 222 . . . 4 (𝜑 → (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐((2 · 𝐾) − 5))) ≤ (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
37286, 334, 43, 337, 371letrd 10396 . . 3 (𝜑 → ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5))) ≤ (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
37315, 86, 43, 333, 372ltletrd 10399 . 2 (𝜑 → ((2 · 𝑁)C𝑁) < (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
37410, 15, 43, 54, 373lttrd 10400 1 (𝜑 → ((4↑𝑁) / 𝑁) < (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943  wral 3061  wrex 3062  ifcif 4225   class class class wbr 4786  cmpt 4863  wf 6027  cfv 6031  (class class class)co 6793  cc 10136  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143   < clt 10276  cle 10277  cmin 10468   / cdiv 10886  cn 11222  2c2 11272  3c3 11273  4c4 11274  5c5 11275  6c6 11276  0cn0 11494  cz 11579  cuz 11888  +crp 12035  ...cfz 12533  cfl 12799  seqcseq 13008  cexp 13067  Ccbc 13293  csqrt 14181  expce 14998  cdvds 15189  cprime 15592   pCnt cpc 15748  logclog 24522  𝑐ccxp 24523  θccht 25038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-xnn0 11566  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-sin 15006  df-cos 15007  df-pi 15009  df-dvds 15190  df-gcd 15425  df-prm 15593  df-pc 15749  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851  df-log 24524  df-cxp 24525  df-cht 25044  df-ppi 25047
This theorem is referenced by:  bposlem9  25238
  Copyright terms: Public domain W3C validator