MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem6 Structured version   Visualization version   GIF version

Theorem bposlem6 27227
Description: Lemma for bpos 27231. By using the various bounds at our disposal, arrive at an inequality that is false for 𝑁 large enough. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Wolf Lammen, 12-Sep-2020.)
Hypotheses
Ref Expression
bpos.1 (𝜑𝑁 ∈ (ℤ‘5))
bpos.2 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
bpos.3 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
bpos.4 𝐾 = (⌊‘((2 · 𝑁) / 3))
bpos.5 𝑀 = (⌊‘(√‘(2 · 𝑁)))
Assertion
Ref Expression
bposlem6 (𝜑 → ((4↑𝑁) / 𝑁) < (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
Distinct variable groups:   𝐹,𝑝   𝑛,𝑝,𝐾   𝑀,𝑝   𝑛,𝑁,𝑝   𝜑,𝑛,𝑝
Allowed substitution hints:   𝐹(𝑛)   𝑀(𝑛)

Proof of Theorem bposlem6
StepHypRef Expression
1 4nn 12208 . . . . 5 4 ∈ ℕ
2 5nn 12211 . . . . . . 7 5 ∈ ℕ
3 bpos.1 . . . . . . 7 (𝜑𝑁 ∈ (ℤ‘5))
4 eluznn 12816 . . . . . . 7 ((5 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘5)) → 𝑁 ∈ ℕ)
52, 3, 4sylancr 587 . . . . . 6 (𝜑𝑁 ∈ ℕ)
65nnnn0d 12442 . . . . 5 (𝜑𝑁 ∈ ℕ0)
7 nnexpcl 13981 . . . . 5 ((4 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (4↑𝑁) ∈ ℕ)
81, 6, 7sylancr 587 . . . 4 (𝜑 → (4↑𝑁) ∈ ℕ)
98nnred 12140 . . 3 (𝜑 → (4↑𝑁) ∈ ℝ)
109, 5nndivred 12179 . 2 (𝜑 → ((4↑𝑁) / 𝑁) ∈ ℝ)
11 fzctr 13540 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
126, 11syl 17 . . . 4 (𝜑𝑁 ∈ (0...(2 · 𝑁)))
13 bccl2 14230 . . . 4 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
1412, 13syl 17 . . 3 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℕ)
1514nnred 12140 . 2 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℝ)
16 2nn 12198 . . . . . . 7 2 ∈ ℕ
17 nnmulcl 12149 . . . . . . 7 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
1816, 5, 17sylancr 587 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℕ)
1918nnrpd 12932 . . . . 5 (𝜑 → (2 · 𝑁) ∈ ℝ+)
2018nnred 12140 . . . . . . . 8 (𝜑 → (2 · 𝑁) ∈ ℝ)
2119rpge0d 12938 . . . . . . . 8 (𝜑 → 0 ≤ (2 · 𝑁))
2220, 21resqrtcld 15325 . . . . . . 7 (𝜑 → (√‘(2 · 𝑁)) ∈ ℝ)
23 3nn 12204 . . . . . . 7 3 ∈ ℕ
24 nndivre 12166 . . . . . . 7 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 3 ∈ ℕ) → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
2522, 23, 24sylancl 586 . . . . . 6 (𝜑 → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
26 2re 12199 . . . . . 6 2 ∈ ℝ
27 readdcl 11089 . . . . . 6 ((((√‘(2 · 𝑁)) / 3) ∈ ℝ ∧ 2 ∈ ℝ) → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
2825, 26, 27sylancl 586 . . . . 5 (𝜑 → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
2919, 28rpcxpcld 26669 . . . 4 (𝜑 → ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) ∈ ℝ+)
3029rpred 12934 . . 3 (𝜑 → ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) ∈ ℝ)
31 2rp 12895 . . . . 5 2 ∈ ℝ+
32 nnmulcl 12149 . . . . . . . . 9 ((4 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (4 · 𝑁) ∈ ℕ)
331, 5, 32sylancr 587 . . . . . . . 8 (𝜑 → (4 · 𝑁) ∈ ℕ)
3433nnred 12140 . . . . . . 7 (𝜑 → (4 · 𝑁) ∈ ℝ)
35 nndivre 12166 . . . . . . 7 (((4 · 𝑁) ∈ ℝ ∧ 3 ∈ ℕ) → ((4 · 𝑁) / 3) ∈ ℝ)
3634, 23, 35sylancl 586 . . . . . 6 (𝜑 → ((4 · 𝑁) / 3) ∈ ℝ)
37 5re 12212 . . . . . 6 5 ∈ ℝ
38 resubcl 11425 . . . . . 6 ((((4 · 𝑁) / 3) ∈ ℝ ∧ 5 ∈ ℝ) → (((4 · 𝑁) / 3) − 5) ∈ ℝ)
3936, 37, 38sylancl 586 . . . . 5 (𝜑 → (((4 · 𝑁) / 3) − 5) ∈ ℝ)
40 rpcxpcl 26612 . . . . 5 ((2 ∈ ℝ+ ∧ (((4 · 𝑁) / 3) − 5) ∈ ℝ) → (2↑𝑐(((4 · 𝑁) / 3) − 5)) ∈ ℝ+)
4131, 39, 40sylancr 587 . . . 4 (𝜑 → (2↑𝑐(((4 · 𝑁) / 3) − 5)) ∈ ℝ+)
4241rpred 12934 . . 3 (𝜑 → (2↑𝑐(((4 · 𝑁) / 3) − 5)) ∈ ℝ)
4330, 42remulcld 11142 . 2 (𝜑 → (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))) ∈ ℝ)
44 df-5 12191 . . . . 5 5 = (4 + 1)
45 4z 12506 . . . . . 6 4 ∈ ℤ
46 uzid 12747 . . . . . 6 (4 ∈ ℤ → 4 ∈ (ℤ‘4))
47 peano2uz 12799 . . . . . 6 (4 ∈ (ℤ‘4) → (4 + 1) ∈ (ℤ‘4))
4845, 46, 47mp2b 10 . . . . 5 (4 + 1) ∈ (ℤ‘4)
4944, 48eqeltri 2827 . . . 4 5 ∈ (ℤ‘4)
50 eqid 2731 . . . . 5 (ℤ‘4) = (ℤ‘4)
5150uztrn2 12751 . . . 4 ((5 ∈ (ℤ‘4) ∧ 𝑁 ∈ (ℤ‘5)) → 𝑁 ∈ (ℤ‘4))
5249, 3, 51sylancr 587 . . 3 (𝜑𝑁 ∈ (ℤ‘4))
53 bclbnd 27218 . . 3 (𝑁 ∈ (ℤ‘4) → ((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁))
5452, 53syl 17 . 2 (𝜑 → ((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁))
55 bpos.3 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
56 id 22 . . . . . . . . . 10 (𝑛 ∈ ℙ → 𝑛 ∈ ℙ)
57 pccl 16761 . . . . . . . . . 10 ((𝑛 ∈ ℙ ∧ ((2 · 𝑁)C𝑁) ∈ ℕ) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
5856, 14, 57syl2anr 597 . . . . . . . . 9 ((𝜑𝑛 ∈ ℙ) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
5958ralrimiva 3124 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ℙ (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
6055, 59pcmptcl 16803 . . . . . . 7 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
6160simprd 495 . . . . . 6 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
62 bpos.2 . . . . . . . . 9 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
63 bpos.4 . . . . . . . . 9 𝐾 = (⌊‘((2 · 𝑁) / 3))
64 bpos.5 . . . . . . . . 9 𝑀 = (⌊‘(√‘(2 · 𝑁)))
653, 62, 55, 63, 64bposlem4 27225 . . . . . . . 8 (𝜑𝑀 ∈ (3...𝐾))
66 elfzuz 13420 . . . . . . . 8 (𝑀 ∈ (3...𝐾) → 𝑀 ∈ (ℤ‘3))
6765, 66syl 17 . . . . . . 7 (𝜑𝑀 ∈ (ℤ‘3))
68 eluznn 12816 . . . . . . 7 ((3 ∈ ℕ ∧ 𝑀 ∈ (ℤ‘3)) → 𝑀 ∈ ℕ)
6923, 67, 68sylancr 587 . . . . . 6 (𝜑𝑀 ∈ ℕ)
7061, 69ffvelcdmd 7018 . . . . 5 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℕ)
7170nnred 12140 . . . 4 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℝ)
72 2z 12504 . . . . . . . . 9 2 ∈ ℤ
73 nndivre 12166 . . . . . . . . . . . 12 (((2 · 𝑁) ∈ ℝ ∧ 3 ∈ ℕ) → ((2 · 𝑁) / 3) ∈ ℝ)
7420, 23, 73sylancl 586 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) / 3) ∈ ℝ)
7574flcld 13702 . . . . . . . . . 10 (𝜑 → (⌊‘((2 · 𝑁) / 3)) ∈ ℤ)
7663, 75eqeltrid 2835 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
77 zmulcl 12521 . . . . . . . . 9 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 · 𝐾) ∈ ℤ)
7872, 76, 77sylancr 587 . . . . . . . 8 (𝜑 → (2 · 𝐾) ∈ ℤ)
792nnzi 12496 . . . . . . . 8 5 ∈ ℤ
80 zsubcl 12514 . . . . . . . 8 (((2 · 𝐾) ∈ ℤ ∧ 5 ∈ ℤ) → ((2 · 𝐾) − 5) ∈ ℤ)
8178, 79, 80sylancl 586 . . . . . . 7 (𝜑 → ((2 · 𝐾) − 5) ∈ ℤ)
8281zred 12577 . . . . . 6 (𝜑 → ((2 · 𝐾) − 5) ∈ ℝ)
83 rpcxpcl 26612 . . . . . 6 ((2 ∈ ℝ+ ∧ ((2 · 𝐾) − 5) ∈ ℝ) → (2↑𝑐((2 · 𝐾) − 5)) ∈ ℝ+)
8431, 82, 83sylancr 587 . . . . 5 (𝜑 → (2↑𝑐((2 · 𝐾) − 5)) ∈ ℝ+)
8584rpred 12934 . . . 4 (𝜑 → (2↑𝑐((2 · 𝐾) − 5)) ∈ ℝ)
8671, 85remulcld 11142 . . 3 (𝜑 → ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5))) ∈ ℝ)
873, 62, 55, 63bposlem3 27224 . . . 4 (𝜑 → (seq1( · , 𝐹)‘𝐾) = ((2 · 𝑁)C𝑁))
88 elfzuz3 13421 . . . . . . . . . 10 (𝑀 ∈ (3...𝐾) → 𝐾 ∈ (ℤ𝑀))
8965, 88syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ (ℤ𝑀))
9055, 59, 69, 89pcmptdvds 16806 . . . . . . . 8 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∥ (seq1( · , 𝐹)‘𝐾))
9170nnzd 12495 . . . . . . . . 9 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℤ)
9270nnne0d 12175 . . . . . . . . 9 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≠ 0)
93 uztrn 12750 . . . . . . . . . . . . 13 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑀 ∈ (ℤ‘3)) → 𝐾 ∈ (ℤ‘3))
9489, 67, 93syl2anc 584 . . . . . . . . . . . 12 (𝜑𝐾 ∈ (ℤ‘3))
95 eluznn 12816 . . . . . . . . . . . 12 ((3 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘3)) → 𝐾 ∈ ℕ)
9623, 94, 95sylancr 587 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℕ)
9761, 96ffvelcdmd 7018 . . . . . . . . . 10 (𝜑 → (seq1( · , 𝐹)‘𝐾) ∈ ℕ)
9897nnzd 12495 . . . . . . . . 9 (𝜑 → (seq1( · , 𝐹)‘𝐾) ∈ ℤ)
99 dvdsval2 16166 . . . . . . . . 9 (((seq1( · , 𝐹)‘𝑀) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑀) ≠ 0 ∧ (seq1( · , 𝐹)‘𝐾) ∈ ℤ) → ((seq1( · , 𝐹)‘𝑀) ∥ (seq1( · , 𝐹)‘𝐾) ↔ ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∈ ℤ))
10091, 92, 98, 99syl3anc 1373 . . . . . . . 8 (𝜑 → ((seq1( · , 𝐹)‘𝑀) ∥ (seq1( · , 𝐹)‘𝐾) ↔ ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∈ ℤ))
10190, 100mpbid 232 . . . . . . 7 (𝜑 → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∈ ℤ)
102101zred 12577 . . . . . 6 (𝜑 → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∈ ℝ)
10369nnred 12140 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
10476zred 12577 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
105 eluzle 12745 . . . . . . . . . 10 (𝐾 ∈ (ℤ𝑀) → 𝑀𝐾)
10689, 105syl 17 . . . . . . . . 9 (𝜑𝑀𝐾)
107 efchtdvds 27096 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑀𝐾) → (exp‘(θ‘𝑀)) ∥ (exp‘(θ‘𝐾)))
108103, 104, 106, 107syl3anc 1373 . . . . . . . 8 (𝜑 → (exp‘(θ‘𝑀)) ∥ (exp‘(θ‘𝐾)))
109 efchtcl 27048 . . . . . . . . . . 11 (𝑀 ∈ ℝ → (exp‘(θ‘𝑀)) ∈ ℕ)
110103, 109syl 17 . . . . . . . . . 10 (𝜑 → (exp‘(θ‘𝑀)) ∈ ℕ)
111110nnzd 12495 . . . . . . . . 9 (𝜑 → (exp‘(θ‘𝑀)) ∈ ℤ)
112110nnne0d 12175 . . . . . . . . 9 (𝜑 → (exp‘(θ‘𝑀)) ≠ 0)
113 efchtcl 27048 . . . . . . . . . . 11 (𝐾 ∈ ℝ → (exp‘(θ‘𝐾)) ∈ ℕ)
114104, 113syl 17 . . . . . . . . . 10 (𝜑 → (exp‘(θ‘𝐾)) ∈ ℕ)
115114nnzd 12495 . . . . . . . . 9 (𝜑 → (exp‘(θ‘𝐾)) ∈ ℤ)
116 dvdsval2 16166 . . . . . . . . 9 (((exp‘(θ‘𝑀)) ∈ ℤ ∧ (exp‘(θ‘𝑀)) ≠ 0 ∧ (exp‘(θ‘𝐾)) ∈ ℤ) → ((exp‘(θ‘𝑀)) ∥ (exp‘(θ‘𝐾)) ↔ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℤ))
117111, 112, 115, 116syl3anc 1373 . . . . . . . 8 (𝜑 → ((exp‘(θ‘𝑀)) ∥ (exp‘(θ‘𝐾)) ↔ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℤ))
118108, 117mpbid 232 . . . . . . 7 (𝜑 → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℤ)
119118zred 12577 . . . . . 6 (𝜑 → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℝ)
120 prmz 16586 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
121 fllt 13710 . . . . . . . . . . . . . . . . . 18 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 𝑝 ∈ ℤ) → ((√‘(2 · 𝑁)) < 𝑝 ↔ (⌊‘(√‘(2 · 𝑁))) < 𝑝))
12222, 120, 121syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → ((√‘(2 · 𝑁)) < 𝑝 ↔ (⌊‘(√‘(2 · 𝑁))) < 𝑝))
12364breq1i 5096 . . . . . . . . . . . . . . . . 17 (𝑀 < 𝑝 ↔ (⌊‘(√‘(2 · 𝑁))) < 𝑝)
124122, 123bitr4di 289 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → ((√‘(2 · 𝑁)) < 𝑝𝑀 < 𝑝))
125120zred 12577 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
126 ltnle 11192 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝑀 < 𝑝 ↔ ¬ 𝑝𝑀))
127103, 125, 126syl2an 596 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → (𝑀 < 𝑝 ↔ ¬ 𝑝𝑀))
128124, 127bitrd 279 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → ((√‘(2 · 𝑁)) < 𝑝 ↔ ¬ 𝑝𝑀))
129 bposlem1 27222 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
1305, 129sylan 580 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
131125adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℝ)
132 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
133 pccl 16761 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ ((2 · 𝑁)C𝑁) ∈ ℕ) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
134132, 14, 133syl2anr 597 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
135131, 134reexpcld 14070 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ)
13620adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ ℙ) → (2 · 𝑁) ∈ ℝ)
137131resqcld 14032 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ ℙ) → (𝑝↑2) ∈ ℝ)
138 lelttr 11203 . . . . . . . . . . . . . . . . . . . 20 (((𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ (𝑝↑2) ∈ ℝ) → (((𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁) ∧ (2 · 𝑁) < (𝑝↑2)) → (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) < (𝑝↑2)))
139135, 136, 137, 138syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ℙ) → (((𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁) ∧ (2 · 𝑁) < (𝑝↑2)) → (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) < (𝑝↑2)))
140130, 139mpand 695 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ ℙ) → ((2 · 𝑁) < (𝑝↑2) → (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) < (𝑝↑2)))
141 resqrtth 15162 . . . . . . . . . . . . . . . . . . . . 21 (((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁)) → ((√‘(2 · 𝑁))↑2) = (2 · 𝑁))
14220, 21, 141syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((√‘(2 · 𝑁))↑2) = (2 · 𝑁))
143142breq1d 5099 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((√‘(2 · 𝑁))↑2) < (𝑝↑2) ↔ (2 · 𝑁) < (𝑝↑2)))
144143adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ ℙ) → (((√‘(2 · 𝑁))↑2) < (𝑝↑2) ↔ (2 · 𝑁) < (𝑝↑2)))
145134nn0zd 12494 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ)
14672a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ℙ) → 2 ∈ ℤ)
147 prmgt1 16608 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℙ → 1 < 𝑝)
148147adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ℙ) → 1 < 𝑝)
149131, 145, 146, 148ltexp2d 14158 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ ℙ) → ((𝑝 pCnt ((2 · 𝑁)C𝑁)) < 2 ↔ (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) < (𝑝↑2)))
150140, 144, 1493imtr4d 294 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → (((√‘(2 · 𝑁))↑2) < (𝑝↑2) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) < 2))
151 df-2 12188 . . . . . . . . . . . . . . . . . 18 2 = (1 + 1)
152151breq2i 5097 . . . . . . . . . . . . . . . . 17 ((𝑝 pCnt ((2 · 𝑁)C𝑁)) < 2 ↔ (𝑝 pCnt ((2 · 𝑁)C𝑁)) < (1 + 1))
153150, 152imbitrdi 251 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → (((√‘(2 · 𝑁))↑2) < (𝑝↑2) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) < (1 + 1)))
15422adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → (√‘(2 · 𝑁)) ∈ ℝ)
15520, 21sqrtge0d 15328 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (√‘(2 · 𝑁)))
156155adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → 0 ≤ (√‘(2 · 𝑁)))
157 prmnn 16585 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
158157nnrpd 12932 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ+)
159158rpge0d 12938 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → 0 ≤ 𝑝)
160159adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → 0 ≤ 𝑝)
161154, 131, 156, 160lt2sqd 14163 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → ((√‘(2 · 𝑁)) < 𝑝 ↔ ((√‘(2 · 𝑁))↑2) < (𝑝↑2)))
162 1z 12502 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
163 zleltp1 12523 . . . . . . . . . . . . . . . . 17 (((𝑝 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑝 pCnt ((2 · 𝑁)C𝑁)) ≤ 1 ↔ (𝑝 pCnt ((2 · 𝑁)C𝑁)) < (1 + 1)))
164145, 162, 163sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → ((𝑝 pCnt ((2 · 𝑁)C𝑁)) ≤ 1 ↔ (𝑝 pCnt ((2 · 𝑁)C𝑁)) < (1 + 1)))
165153, 161, 1643imtr4d 294 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → ((√‘(2 · 𝑁)) < 𝑝 → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ≤ 1))
166128, 165sylbird 260 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℙ) → (¬ 𝑝𝑀 → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ≤ 1))
167166imp 406 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑀) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ≤ 1)
168167adantrl 716 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝐾 ∧ ¬ 𝑝𝑀)) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ≤ 1)
169 iftrue 4478 . . . . . . . . . . . . 13 ((𝑝𝐾 ∧ ¬ 𝑝𝑀) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
170169adantl 481 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝐾 ∧ ¬ 𝑝𝑀)) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
171 iftrue 4478 . . . . . . . . . . . . 13 ((𝑝𝐾 ∧ ¬ 𝑝𝑀) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0) = 1)
172171adantl 481 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝐾 ∧ ¬ 𝑝𝑀)) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0) = 1)
173168, 170, 1723brtr4d 5121 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝐾 ∧ ¬ 𝑝𝑀)) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) ≤ if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0))
174 0le0 12226 . . . . . . . . . . . . 13 0 ≤ 0
175 iffalse 4481 . . . . . . . . . . . . . 14 (¬ (𝑝𝐾 ∧ ¬ 𝑝𝑀) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = 0)
176 iffalse 4481 . . . . . . . . . . . . . 14 (¬ (𝑝𝐾 ∧ ¬ 𝑝𝑀) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0) = 0)
177175, 176breq12d 5102 . . . . . . . . . . . . 13 (¬ (𝑝𝐾 ∧ ¬ 𝑝𝑀) → (if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) ≤ if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0) ↔ 0 ≤ 0))
178174, 177mpbiri 258 . . . . . . . . . . . 12 (¬ (𝑝𝐾 ∧ ¬ 𝑝𝑀) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) ≤ if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0))
179178adantl 481 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ ¬ (𝑝𝐾 ∧ ¬ 𝑝𝑀)) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) ≤ if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0))
180173, 179pm2.61dan 812 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) ≤ if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0))
18159adantr 480 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → ∀𝑛 ∈ ℙ (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
18269adantr 480 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → 𝑀 ∈ ℕ)
183 simpr 484 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
184 oveq1 7353 . . . . . . . . . . 11 (𝑛 = 𝑝 → (𝑛 pCnt ((2 · 𝑁)C𝑁)) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
18589adantr 480 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → 𝐾 ∈ (ℤ𝑀))
18655, 181, 182, 183, 184, 185pcmpt2 16805 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀))) = if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0))
187 eqid 2731 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
188187prmorcht 27115 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℕ → (exp‘(θ‘𝐾)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝐾))
18996, 188syl 17 . . . . . . . . . . . . . 14 (𝜑 → (exp‘(θ‘𝐾)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝐾))
190187prmorcht 27115 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (exp‘(θ‘𝑀)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑀))
19169, 190syl 17 . . . . . . . . . . . . . 14 (𝜑 → (exp‘(θ‘𝑀)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑀))
192189, 191oveq12d 7364 . . . . . . . . . . . . 13 (𝜑 → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝐾) / (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑀)))
193192adantr 480 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝐾) / (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑀)))
194193oveq2d 7362 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))) = (𝑝 pCnt ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝐾) / (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑀))))
195 nncn 12133 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
196195exp1d 14048 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛↑1) = 𝑛)
197196ifeq1d 4492 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → if(𝑛 ∈ ℙ, (𝑛↑1), 1) = if(𝑛 ∈ ℙ, 𝑛, 1))
198197mpteq2ia 5184 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑1), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
199198eqcomi 2740 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑1), 1))
200 1nn0 12397 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
201200a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℙ) → 1 ∈ ℕ0)
202201ralrimiva 3124 . . . . . . . . . . . . 13 (𝜑 → ∀𝑛 ∈ ℙ 1 ∈ ℕ0)
203202adantr 480 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → ∀𝑛 ∈ ℙ 1 ∈ ℕ0)
204 eqidd 2732 . . . . . . . . . . . 12 (𝑛 = 𝑝 → 1 = 1)
205199, 203, 182, 183, 204, 185pcmpt2 16805 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝐾) / (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑀))) = if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0))
206194, 205eqtrd 2766 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))) = if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0))
207180, 186, 2063brtr4d 5121 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀))) ≤ (𝑝 pCnt ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))))
208207ralrimiva 3124 . . . . . . . 8 (𝜑 → ∀𝑝 ∈ ℙ (𝑝 pCnt ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀))) ≤ (𝑝 pCnt ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))))
209 pc2dvds 16791 . . . . . . . . 9 ((((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∈ ℤ ∧ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℤ) → (((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∥ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀))) ≤ (𝑝 pCnt ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))))))
210101, 118, 209syl2anc 584 . . . . . . . 8 (𝜑 → (((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∥ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀))) ≤ (𝑝 pCnt ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))))))
211208, 210mpbird 257 . . . . . . 7 (𝜑 → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∥ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))))
212114nnred 12140 . . . . . . . . . 10 (𝜑 → (exp‘(θ‘𝐾)) ∈ ℝ)
213110nnred 12140 . . . . . . . . . 10 (𝜑 → (exp‘(θ‘𝑀)) ∈ ℝ)
214114nngt0d 12174 . . . . . . . . . 10 (𝜑 → 0 < (exp‘(θ‘𝐾)))
215110nngt0d 12174 . . . . . . . . . 10 (𝜑 → 0 < (exp‘(θ‘𝑀)))
216212, 213, 214, 215divgt0d 12057 . . . . . . . . 9 (𝜑 → 0 < ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))))
217 elnnz 12478 . . . . . . . . 9 (((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℕ ↔ (((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℤ ∧ 0 < ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))))
218118, 216, 217sylanbrc 583 . . . . . . . 8 (𝜑 → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℕ)
219 dvdsle 16221 . . . . . . . 8 ((((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∈ ℤ ∧ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℕ) → (((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∥ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ≤ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))))
220101, 218, 219syl2anc 584 . . . . . . 7 (𝜑 → (((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∥ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ≤ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))))
221211, 220mpd 15 . . . . . 6 (𝜑 → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ≤ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))))
222 nndivre 12166 . . . . . . . 8 (((exp‘(θ‘𝐾)) ∈ ℝ ∧ 4 ∈ ℕ) → ((exp‘(θ‘𝐾)) / 4) ∈ ℝ)
223212, 1, 222sylancl 586 . . . . . . 7 (𝜑 → ((exp‘(θ‘𝐾)) / 4) ∈ ℝ)
224 4re 12209 . . . . . . . . . 10 4 ∈ ℝ
225224a1i 11 . . . . . . . . 9 (𝜑 → 4 ∈ ℝ)
226 6re 12215 . . . . . . . . . 10 6 ∈ ℝ
227226a1i 11 . . . . . . . . 9 (𝜑 → 6 ∈ ℝ)
228 4lt6 12302 . . . . . . . . . 10 4 < 6
229228a1i 11 . . . . . . . . 9 (𝜑 → 4 < 6)
230 cht3 27110 . . . . . . . . . . . 12 (θ‘3) = (log‘6)
231230fveq2i 6825 . . . . . . . . . . 11 (exp‘(θ‘3)) = (exp‘(log‘6))
232 6pos 12235 . . . . . . . . . . . . 13 0 < 6
233226, 232elrpii 12893 . . . . . . . . . . . 12 6 ∈ ℝ+
234 reeflog 26516 . . . . . . . . . . . 12 (6 ∈ ℝ+ → (exp‘(log‘6)) = 6)
235233, 234ax-mp 5 . . . . . . . . . . 11 (exp‘(log‘6)) = 6
236231, 235eqtri 2754 . . . . . . . . . 10 (exp‘(θ‘3)) = 6
237 3re 12205 . . . . . . . . . . . . 13 3 ∈ ℝ
238237a1i 11 . . . . . . . . . . . 12 (𝜑 → 3 ∈ ℝ)
239 eluzle 12745 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘3) → 3 ≤ 𝑀)
24067, 239syl 17 . . . . . . . . . . . 12 (𝜑 → 3 ≤ 𝑀)
241 chtwordi 27093 . . . . . . . . . . . 12 ((3 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 3 ≤ 𝑀) → (θ‘3) ≤ (θ‘𝑀))
242238, 103, 240, 241syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (θ‘3) ≤ (θ‘𝑀))
243 chtcl 27046 . . . . . . . . . . . . 13 (3 ∈ ℝ → (θ‘3) ∈ ℝ)
244237, 243ax-mp 5 . . . . . . . . . . . 12 (θ‘3) ∈ ℝ
245 chtcl 27046 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ → (θ‘𝑀) ∈ ℝ)
246103, 245syl 17 . . . . . . . . . . . 12 (𝜑 → (θ‘𝑀) ∈ ℝ)
247 efle 16027 . . . . . . . . . . . 12 (((θ‘3) ∈ ℝ ∧ (θ‘𝑀) ∈ ℝ) → ((θ‘3) ≤ (θ‘𝑀) ↔ (exp‘(θ‘3)) ≤ (exp‘(θ‘𝑀))))
248244, 246, 247sylancr 587 . . . . . . . . . . 11 (𝜑 → ((θ‘3) ≤ (θ‘𝑀) ↔ (exp‘(θ‘3)) ≤ (exp‘(θ‘𝑀))))
249242, 248mpbid 232 . . . . . . . . . 10 (𝜑 → (exp‘(θ‘3)) ≤ (exp‘(θ‘𝑀)))
250236, 249eqbrtrrid 5125 . . . . . . . . 9 (𝜑 → 6 ≤ (exp‘(θ‘𝑀)))
251225, 227, 213, 229, 250ltletrd 11273 . . . . . . . 8 (𝜑 → 4 < (exp‘(θ‘𝑀)))
252 4pos 12232 . . . . . . . . . 10 0 < 4
253252a1i 11 . . . . . . . . 9 (𝜑 → 0 < 4)
254 ltdiv2 12008 . . . . . . . . 9 (((4 ∈ ℝ ∧ 0 < 4) ∧ ((exp‘(θ‘𝑀)) ∈ ℝ ∧ 0 < (exp‘(θ‘𝑀))) ∧ ((exp‘(θ‘𝐾)) ∈ ℝ ∧ 0 < (exp‘(θ‘𝐾)))) → (4 < (exp‘(θ‘𝑀)) ↔ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) < ((exp‘(θ‘𝐾)) / 4)))
255225, 253, 213, 215, 212, 214, 254syl222anc 1388 . . . . . . . 8 (𝜑 → (4 < (exp‘(θ‘𝑀)) ↔ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) < ((exp‘(θ‘𝐾)) / 4)))
256251, 255mpbid 232 . . . . . . 7 (𝜑 → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) < ((exp‘(θ‘𝐾)) / 4))
25726a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℝ)
258 2lt3 12292 . . . . . . . . . . . . . 14 2 < 3
259258a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 < 3)
260238, 103, 104, 240, 106letrd 11270 . . . . . . . . . . . . 13 (𝜑 → 3 ≤ 𝐾)
261257, 238, 104, 259, 260ltletrd 11273 . . . . . . . . . . . 12 (𝜑 → 2 < 𝐾)
262 chtub 27150 . . . . . . . . . . . 12 ((𝐾 ∈ ℝ ∧ 2 < 𝐾) → (θ‘𝐾) < ((log‘2) · ((2 · 𝐾) − 3)))
263104, 261, 262syl2anc 584 . . . . . . . . . . 11 (𝜑 → (θ‘𝐾) < ((log‘2) · ((2 · 𝐾) − 3)))
264 chtcl 27046 . . . . . . . . . . . . 13 (𝐾 ∈ ℝ → (θ‘𝐾) ∈ ℝ)
265104, 264syl 17 . . . . . . . . . . . 12 (𝜑 → (θ‘𝐾) ∈ ℝ)
266 relogcl 26511 . . . . . . . . . . . . . 14 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
26731, 266ax-mp 5 . . . . . . . . . . . . 13 (log‘2) ∈ ℝ
268 3z 12505 . . . . . . . . . . . . . . 15 3 ∈ ℤ
269 zsubcl 12514 . . . . . . . . . . . . . . 15 (((2 · 𝐾) ∈ ℤ ∧ 3 ∈ ℤ) → ((2 · 𝐾) − 3) ∈ ℤ)
27078, 268, 269sylancl 586 . . . . . . . . . . . . . 14 (𝜑 → ((2 · 𝐾) − 3) ∈ ℤ)
271270zred 12577 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝐾) − 3) ∈ ℝ)
272 remulcl 11091 . . . . . . . . . . . . 13 (((log‘2) ∈ ℝ ∧ ((2 · 𝐾) − 3) ∈ ℝ) → ((log‘2) · ((2 · 𝐾) − 3)) ∈ ℝ)
273267, 271, 272sylancr 587 . . . . . . . . . . . 12 (𝜑 → ((log‘2) · ((2 · 𝐾) − 3)) ∈ ℝ)
274 eflt 16026 . . . . . . . . . . . 12 (((θ‘𝐾) ∈ ℝ ∧ ((log‘2) · ((2 · 𝐾) − 3)) ∈ ℝ) → ((θ‘𝐾) < ((log‘2) · ((2 · 𝐾) − 3)) ↔ (exp‘(θ‘𝐾)) < (exp‘((log‘2) · ((2 · 𝐾) − 3)))))
275265, 273, 274syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((θ‘𝐾) < ((log‘2) · ((2 · 𝐾) − 3)) ↔ (exp‘(θ‘𝐾)) < (exp‘((log‘2) · ((2 · 𝐾) − 3)))))
276263, 275mpbid 232 . . . . . . . . . 10 (𝜑 → (exp‘(θ‘𝐾)) < (exp‘((log‘2) · ((2 · 𝐾) − 3))))
277 reexplog 26531 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ ((2 · 𝐾) − 3) ∈ ℤ) → (2↑((2 · 𝐾) − 3)) = (exp‘(((2 · 𝐾) − 3) · (log‘2))))
27831, 270, 277sylancr 587 . . . . . . . . . . 11 (𝜑 → (2↑((2 · 𝐾) − 3)) = (exp‘(((2 · 𝐾) − 3) · (log‘2))))
279270zcnd 12578 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝐾) − 3) ∈ ℂ)
280267recni 11126 . . . . . . . . . . . . 13 (log‘2) ∈ ℂ
281 mulcom 11092 . . . . . . . . . . . . 13 ((((2 · 𝐾) − 3) ∈ ℂ ∧ (log‘2) ∈ ℂ) → (((2 · 𝐾) − 3) · (log‘2)) = ((log‘2) · ((2 · 𝐾) − 3)))
282279, 280, 281sylancl 586 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝐾) − 3) · (log‘2)) = ((log‘2) · ((2 · 𝐾) − 3)))
283282fveq2d 6826 . . . . . . . . . . 11 (𝜑 → (exp‘(((2 · 𝐾) − 3) · (log‘2))) = (exp‘((log‘2) · ((2 · 𝐾) − 3))))
284278, 283eqtrd 2766 . . . . . . . . . 10 (𝜑 → (2↑((2 · 𝐾) − 3)) = (exp‘((log‘2) · ((2 · 𝐾) − 3))))
285276, 284breqtrrd 5117 . . . . . . . . 9 (𝜑 → (exp‘(θ‘𝐾)) < (2↑((2 · 𝐾) − 3)))
286 3p2e5 12271 . . . . . . . . . . . . . . . 16 (3 + 2) = 5
287286oveq1i 7356 . . . . . . . . . . . . . . 15 ((3 + 2) − 2) = (5 − 2)
288 3cn 12206 . . . . . . . . . . . . . . . 16 3 ∈ ℂ
289 2cn 12200 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
290288, 289pncan3oi 11376 . . . . . . . . . . . . . . 15 ((3 + 2) − 2) = 3
291287, 290eqtr3i 2756 . . . . . . . . . . . . . 14 (5 − 2) = 3
292291oveq2i 7357 . . . . . . . . . . . . 13 ((2 · 𝐾) − (5 − 2)) = ((2 · 𝐾) − 3)
29378zcnd 12578 . . . . . . . . . . . . . 14 (𝜑 → (2 · 𝐾) ∈ ℂ)
294 5cn 12213 . . . . . . . . . . . . . . 15 5 ∈ ℂ
295 subsub 11391 . . . . . . . . . . . . . . 15 (((2 · 𝐾) ∈ ℂ ∧ 5 ∈ ℂ ∧ 2 ∈ ℂ) → ((2 · 𝐾) − (5 − 2)) = (((2 · 𝐾) − 5) + 2))
296294, 289, 295mp3an23 1455 . . . . . . . . . . . . . 14 ((2 · 𝐾) ∈ ℂ → ((2 · 𝐾) − (5 − 2)) = (((2 · 𝐾) − 5) + 2))
297293, 296syl 17 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝐾) − (5 − 2)) = (((2 · 𝐾) − 5) + 2))
298292, 297eqtr3id 2780 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝐾) − 3) = (((2 · 𝐾) − 5) + 2))
299298oveq2d 7362 . . . . . . . . . . 11 (𝜑 → (2↑𝑐((2 · 𝐾) − 3)) = (2↑𝑐(((2 · 𝐾) − 5) + 2)))
300 2ne0 12229 . . . . . . . . . . . 12 2 ≠ 0
301 cxpexpz 26603 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ ((2 · 𝐾) − 3) ∈ ℤ) → (2↑𝑐((2 · 𝐾) − 3)) = (2↑((2 · 𝐾) − 3)))
302289, 300, 270, 301mp3an12i 1467 . . . . . . . . . . 11 (𝜑 → (2↑𝑐((2 · 𝐾) − 3)) = (2↑((2 · 𝐾) − 3)))
30381zcnd 12578 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝐾) − 5) ∈ ℂ)
304 2cnne0 12330 . . . . . . . . . . . . 13 (2 ∈ ℂ ∧ 2 ≠ 0)
305 cxpadd 26615 . . . . . . . . . . . . 13 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2 · 𝐾) − 5) ∈ ℂ ∧ 2 ∈ ℂ) → (2↑𝑐(((2 · 𝐾) − 5) + 2)) = ((2↑𝑐((2 · 𝐾) − 5)) · (2↑𝑐2)))
306304, 289, 305mp3an13 1454 . . . . . . . . . . . 12 (((2 · 𝐾) − 5) ∈ ℂ → (2↑𝑐(((2 · 𝐾) − 5) + 2)) = ((2↑𝑐((2 · 𝐾) − 5)) · (2↑𝑐2)))
307303, 306syl 17 . . . . . . . . . . 11 (𝜑 → (2↑𝑐(((2 · 𝐾) − 5) + 2)) = ((2↑𝑐((2 · 𝐾) − 5)) · (2↑𝑐2)))
308299, 302, 3073eqtr3d 2774 . . . . . . . . . 10 (𝜑 → (2↑((2 · 𝐾) − 3)) = ((2↑𝑐((2 · 𝐾) − 5)) · (2↑𝑐2)))
309 2nn0 12398 . . . . . . . . . . . . 13 2 ∈ ℕ0
310 cxpexp 26604 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 2 ∈ ℕ0) → (2↑𝑐2) = (2↑2))
311289, 309, 310mp2an 692 . . . . . . . . . . . 12 (2↑𝑐2) = (2↑2)
312 sq2 14104 . . . . . . . . . . . 12 (2↑2) = 4
313311, 312eqtri 2754 . . . . . . . . . . 11 (2↑𝑐2) = 4
314313oveq2i 7357 . . . . . . . . . 10 ((2↑𝑐((2 · 𝐾) − 5)) · (2↑𝑐2)) = ((2↑𝑐((2 · 𝐾) − 5)) · 4)
315308, 314eqtrdi 2782 . . . . . . . . 9 (𝜑 → (2↑((2 · 𝐾) − 3)) = ((2↑𝑐((2 · 𝐾) − 5)) · 4))
316285, 315breqtrd 5115 . . . . . . . 8 (𝜑 → (exp‘(θ‘𝐾)) < ((2↑𝑐((2 · 𝐾) − 5)) · 4))
317224, 252pm3.2i 470 . . . . . . . . . 10 (4 ∈ ℝ ∧ 0 < 4)
318317a1i 11 . . . . . . . . 9 (𝜑 → (4 ∈ ℝ ∧ 0 < 4))
319 ltdivmul2 11999 . . . . . . . . 9 (((exp‘(θ‘𝐾)) ∈ ℝ ∧ (2↑𝑐((2 · 𝐾) − 5)) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → (((exp‘(θ‘𝐾)) / 4) < (2↑𝑐((2 · 𝐾) − 5)) ↔ (exp‘(θ‘𝐾)) < ((2↑𝑐((2 · 𝐾) − 5)) · 4)))
320212, 85, 318, 319syl3anc 1373 . . . . . . . 8 (𝜑 → (((exp‘(θ‘𝐾)) / 4) < (2↑𝑐((2 · 𝐾) − 5)) ↔ (exp‘(θ‘𝐾)) < ((2↑𝑐((2 · 𝐾) − 5)) · 4)))
321316, 320mpbird 257 . . . . . . 7 (𝜑 → ((exp‘(θ‘𝐾)) / 4) < (2↑𝑐((2 · 𝐾) − 5)))
322119, 223, 85, 256, 321lttrd 11274 . . . . . 6 (𝜑 → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) < (2↑𝑐((2 · 𝐾) − 5)))
323102, 119, 85, 221, 322lelttrd 11271 . . . . 5 (𝜑 → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) < (2↑𝑐((2 · 𝐾) − 5)))
32497nnred 12140 . . . . . 6 (𝜑 → (seq1( · , 𝐹)‘𝐾) ∈ ℝ)
325 nnre 12132 . . . . . . . 8 ((seq1( · , 𝐹)‘𝑀) ∈ ℕ → (seq1( · , 𝐹)‘𝑀) ∈ ℝ)
326 nngt0 12156 . . . . . . . 8 ((seq1( · , 𝐹)‘𝑀) ∈ ℕ → 0 < (seq1( · , 𝐹)‘𝑀))
327325, 326jca 511 . . . . . . 7 ((seq1( · , 𝐹)‘𝑀) ∈ ℕ → ((seq1( · , 𝐹)‘𝑀) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑀)))
32870, 327syl 17 . . . . . 6 (𝜑 → ((seq1( · , 𝐹)‘𝑀) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑀)))
329 ltdivmul 11997 . . . . . 6 (((seq1( · , 𝐹)‘𝐾) ∈ ℝ ∧ (2↑𝑐((2 · 𝐾) − 5)) ∈ ℝ ∧ ((seq1( · , 𝐹)‘𝑀) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑀))) → (((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) < (2↑𝑐((2 · 𝐾) − 5)) ↔ (seq1( · , 𝐹)‘𝐾) < ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5)))))
330324, 85, 328, 329syl3anc 1373 . . . . 5 (𝜑 → (((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) < (2↑𝑐((2 · 𝐾) − 5)) ↔ (seq1( · , 𝐹)‘𝐾) < ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5)))))
331323, 330mpbid 232 . . . 4 (𝜑 → (seq1( · , 𝐹)‘𝐾) < ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5))))
33287, 331eqbrtrrd 5113 . . 3 (𝜑 → ((2 · 𝑁)C𝑁) < ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5))))
33330, 85remulcld 11142 . . . 4 (𝜑 → (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐((2 · 𝐾) − 5))) ∈ ℝ)
3343, 62, 55, 63, 64bposlem5 27226 . . . . 5 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)))
33571, 30, 84lemul1d 12977 . . . . 5 (𝜑 → ((seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) ↔ ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5))) ≤ (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐((2 · 𝐾) − 5)))))
336334, 335mpbid 232 . . . 4 (𝜑 → ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5))) ≤ (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐((2 · 𝐾) − 5))))
33778zred 12577 . . . . . . 7 (𝜑 → (2 · 𝐾) ∈ ℝ)
33837a1i 11 . . . . . . 7 (𝜑 → 5 ∈ ℝ)
339 flle 13703 . . . . . . . . . . 11 (((2 · 𝑁) / 3) ∈ ℝ → (⌊‘((2 · 𝑁) / 3)) ≤ ((2 · 𝑁) / 3))
34074, 339syl 17 . . . . . . . . . 10 (𝜑 → (⌊‘((2 · 𝑁) / 3)) ≤ ((2 · 𝑁) / 3))
34163, 340eqbrtrid 5124 . . . . . . . . 9 (𝜑𝐾 ≤ ((2 · 𝑁) / 3))
342 2pos 12228 . . . . . . . . . . . 12 0 < 2
34326, 342pm3.2i 470 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
344343a1i 11 . . . . . . . . . 10 (𝜑 → (2 ∈ ℝ ∧ 0 < 2))
345 lemul2 11974 . . . . . . . . . 10 ((𝐾 ∈ ℝ ∧ ((2 · 𝑁) / 3) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐾 ≤ ((2 · 𝑁) / 3) ↔ (2 · 𝐾) ≤ (2 · ((2 · 𝑁) / 3))))
346104, 74, 344, 345syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝐾 ≤ ((2 · 𝑁) / 3) ↔ (2 · 𝐾) ≤ (2 · ((2 · 𝑁) / 3))))
347341, 346mpbid 232 . . . . . . . 8 (𝜑 → (2 · 𝐾) ≤ (2 · ((2 · 𝑁) / 3)))
34818nncnd 12141 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℂ)
349 3ne0 12231 . . . . . . . . . . . 12 3 ≠ 0
350288, 349pm3.2i 470 . . . . . . . . . . 11 (3 ∈ ℂ ∧ 3 ≠ 0)
351 divass 11794 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (2 · 𝑁) ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((2 · (2 · 𝑁)) / 3) = (2 · ((2 · 𝑁) / 3)))
352289, 350, 351mp3an13 1454 . . . . . . . . . 10 ((2 · 𝑁) ∈ ℂ → ((2 · (2 · 𝑁)) / 3) = (2 · ((2 · 𝑁) / 3)))
353348, 352syl 17 . . . . . . . . 9 (𝜑 → ((2 · (2 · 𝑁)) / 3) = (2 · ((2 · 𝑁) / 3)))
3545nncnd 12141 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
355 mulass 11094 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((2 · 2) · 𝑁) = (2 · (2 · 𝑁)))
356289, 289, 354, 355mp3an12i 1467 . . . . . . . . . . 11 (𝜑 → ((2 · 2) · 𝑁) = (2 · (2 · 𝑁)))
357 2t2e4 12284 . . . . . . . . . . . 12 (2 · 2) = 4
358357oveq1i 7356 . . . . . . . . . . 11 ((2 · 2) · 𝑁) = (4 · 𝑁)
359356, 358eqtr3di 2781 . . . . . . . . . 10 (𝜑 → (2 · (2 · 𝑁)) = (4 · 𝑁))
360359oveq1d 7361 . . . . . . . . 9 (𝜑 → ((2 · (2 · 𝑁)) / 3) = ((4 · 𝑁) / 3))
361353, 360eqtr3d 2768 . . . . . . . 8 (𝜑 → (2 · ((2 · 𝑁) / 3)) = ((4 · 𝑁) / 3))
362347, 361breqtrd 5115 . . . . . . 7 (𝜑 → (2 · 𝐾) ≤ ((4 · 𝑁) / 3))
363337, 36, 338, 362lesub1dd 11733 . . . . . 6 (𝜑 → ((2 · 𝐾) − 5) ≤ (((4 · 𝑁) / 3) − 5))
364 1lt2 12291 . . . . . . . 8 1 < 2
365364a1i 11 . . . . . . 7 (𝜑 → 1 < 2)
366257, 365, 82, 39cxpled 26656 . . . . . 6 (𝜑 → (((2 · 𝐾) − 5) ≤ (((4 · 𝑁) / 3) − 5) ↔ (2↑𝑐((2 · 𝐾) − 5)) ≤ (2↑𝑐(((4 · 𝑁) / 3) − 5))))
367363, 366mpbid 232 . . . . 5 (𝜑 → (2↑𝑐((2 · 𝐾) − 5)) ≤ (2↑𝑐(((4 · 𝑁) / 3) − 5)))
36885, 42, 29lemul2d 12978 . . . . 5 (𝜑 → ((2↑𝑐((2 · 𝐾) − 5)) ≤ (2↑𝑐(((4 · 𝑁) / 3) − 5)) ↔ (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐((2 · 𝐾) − 5))) ≤ (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5)))))
369367, 368mpbid 232 . . . 4 (𝜑 → (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐((2 · 𝐾) − 5))) ≤ (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
37086, 333, 43, 336, 369letrd 11270 . . 3 (𝜑 → ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5))) ≤ (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
37115, 86, 43, 332, 370ltletrd 11273 . 2 (𝜑 → ((2 · 𝑁)C𝑁) < (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
37210, 15, 43, 54, 371lttrd 11274 1 (𝜑 → ((4↑𝑁) / 𝑁) < (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  ifcif 4472   class class class wbr 5089  cmpt 5170  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  2c2 12180  3c3 12181  4c4 12182  5c5 12183  6c6 12184  0cn0 12381  cz 12468  cuz 12732  +crp 12890  ...cfz 13407  cfl 13694  seqcseq 13908  cexp 13968  Ccbc 14209  csqrt 15140  expce 15968  cdvds 16163  cprime 16582   pCnt cpc 16748  logclog 26490  𝑐ccxp 26491  θccht 27028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-dvds 16164  df-gcd 16406  df-prm 16583  df-pc 16749  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-log 26492  df-cxp 26493  df-cht 27034  df-ppi 27037
This theorem is referenced by:  bposlem9  27230
  Copyright terms: Public domain W3C validator