MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem6 Structured version   Visualization version   GIF version

Theorem bposlem6 25868
Description: Lemma for bpos 25872. By using the various bounds at our disposal, arrive at an inequality that is false for 𝑁 large enough. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Wolf Lammen, 12-Sep-2020.)
Hypotheses
Ref Expression
bpos.1 (𝜑𝑁 ∈ (ℤ‘5))
bpos.2 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
bpos.3 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
bpos.4 𝐾 = (⌊‘((2 · 𝑁) / 3))
bpos.5 𝑀 = (⌊‘(√‘(2 · 𝑁)))
Assertion
Ref Expression
bposlem6 (𝜑 → ((4↑𝑁) / 𝑁) < (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
Distinct variable groups:   𝐹,𝑝   𝑛,𝑝,𝐾   𝑀,𝑝   𝑛,𝑁,𝑝   𝜑,𝑛,𝑝
Allowed substitution hints:   𝐹(𝑛)   𝑀(𝑛)

Proof of Theorem bposlem6
StepHypRef Expression
1 4nn 11723 . . . . 5 4 ∈ ℕ
2 5nn 11726 . . . . . . 7 5 ∈ ℕ
3 bpos.1 . . . . . . 7 (𝜑𝑁 ∈ (ℤ‘5))
4 eluznn 12321 . . . . . . 7 ((5 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘5)) → 𝑁 ∈ ℕ)
52, 3, 4sylancr 589 . . . . . 6 (𝜑𝑁 ∈ ℕ)
65nnnn0d 11958 . . . . 5 (𝜑𝑁 ∈ ℕ0)
7 nnexpcl 13445 . . . . 5 ((4 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (4↑𝑁) ∈ ℕ)
81, 6, 7sylancr 589 . . . 4 (𝜑 → (4↑𝑁) ∈ ℕ)
98nnred 11656 . . 3 (𝜑 → (4↑𝑁) ∈ ℝ)
109, 5nndivred 11694 . 2 (𝜑 → ((4↑𝑁) / 𝑁) ∈ ℝ)
11 fzctr 13022 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
126, 11syl 17 . . . 4 (𝜑𝑁 ∈ (0...(2 · 𝑁)))
13 bccl2 13686 . . . 4 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
1412, 13syl 17 . . 3 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℕ)
1514nnred 11656 . 2 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℝ)
16 2nn 11713 . . . . . . 7 2 ∈ ℕ
17 nnmulcl 11664 . . . . . . 7 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
1816, 5, 17sylancr 589 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℕ)
1918nnrpd 12432 . . . . 5 (𝜑 → (2 · 𝑁) ∈ ℝ+)
2018nnred 11656 . . . . . . . 8 (𝜑 → (2 · 𝑁) ∈ ℝ)
2119rpge0d 12438 . . . . . . . 8 (𝜑 → 0 ≤ (2 · 𝑁))
2220, 21resqrtcld 14780 . . . . . . 7 (𝜑 → (√‘(2 · 𝑁)) ∈ ℝ)
23 3nn 11719 . . . . . . 7 3 ∈ ℕ
24 nndivre 11681 . . . . . . 7 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 3 ∈ ℕ) → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
2522, 23, 24sylancl 588 . . . . . 6 (𝜑 → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
26 2re 11714 . . . . . 6 2 ∈ ℝ
27 readdcl 10623 . . . . . 6 ((((√‘(2 · 𝑁)) / 3) ∈ ℝ ∧ 2 ∈ ℝ) → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
2825, 26, 27sylancl 588 . . . . 5 (𝜑 → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
2919, 28rpcxpcld 25318 . . . 4 (𝜑 → ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) ∈ ℝ+)
3029rpred 12434 . . 3 (𝜑 → ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) ∈ ℝ)
31 2rp 12397 . . . . 5 2 ∈ ℝ+
32 nnmulcl 11664 . . . . . . . . 9 ((4 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (4 · 𝑁) ∈ ℕ)
331, 5, 32sylancr 589 . . . . . . . 8 (𝜑 → (4 · 𝑁) ∈ ℕ)
3433nnred 11656 . . . . . . 7 (𝜑 → (4 · 𝑁) ∈ ℝ)
35 nndivre 11681 . . . . . . 7 (((4 · 𝑁) ∈ ℝ ∧ 3 ∈ ℕ) → ((4 · 𝑁) / 3) ∈ ℝ)
3634, 23, 35sylancl 588 . . . . . 6 (𝜑 → ((4 · 𝑁) / 3) ∈ ℝ)
37 5re 11727 . . . . . 6 5 ∈ ℝ
38 resubcl 10953 . . . . . 6 ((((4 · 𝑁) / 3) ∈ ℝ ∧ 5 ∈ ℝ) → (((4 · 𝑁) / 3) − 5) ∈ ℝ)
3936, 37, 38sylancl 588 . . . . 5 (𝜑 → (((4 · 𝑁) / 3) − 5) ∈ ℝ)
40 rpcxpcl 25262 . . . . 5 ((2 ∈ ℝ+ ∧ (((4 · 𝑁) / 3) − 5) ∈ ℝ) → (2↑𝑐(((4 · 𝑁) / 3) − 5)) ∈ ℝ+)
4131, 39, 40sylancr 589 . . . 4 (𝜑 → (2↑𝑐(((4 · 𝑁) / 3) − 5)) ∈ ℝ+)
4241rpred 12434 . . 3 (𝜑 → (2↑𝑐(((4 · 𝑁) / 3) − 5)) ∈ ℝ)
4330, 42remulcld 10674 . 2 (𝜑 → (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))) ∈ ℝ)
44 df-5 11706 . . . . 5 5 = (4 + 1)
45 4z 12019 . . . . . 6 4 ∈ ℤ
46 uzid 12261 . . . . . 6 (4 ∈ ℤ → 4 ∈ (ℤ‘4))
47 peano2uz 12304 . . . . . 6 (4 ∈ (ℤ‘4) → (4 + 1) ∈ (ℤ‘4))
4845, 46, 47mp2b 10 . . . . 5 (4 + 1) ∈ (ℤ‘4)
4944, 48eqeltri 2912 . . . 4 5 ∈ (ℤ‘4)
50 eqid 2824 . . . . 5 (ℤ‘4) = (ℤ‘4)
5150uztrn2 12265 . . . 4 ((5 ∈ (ℤ‘4) ∧ 𝑁 ∈ (ℤ‘5)) → 𝑁 ∈ (ℤ‘4))
5249, 3, 51sylancr 589 . . 3 (𝜑𝑁 ∈ (ℤ‘4))
53 bclbnd 25859 . . 3 (𝑁 ∈ (ℤ‘4) → ((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁))
5452, 53syl 17 . 2 (𝜑 → ((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁))
55 bpos.3 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
56 id 22 . . . . . . . . . 10 (𝑛 ∈ ℙ → 𝑛 ∈ ℙ)
57 pccl 16189 . . . . . . . . . 10 ((𝑛 ∈ ℙ ∧ ((2 · 𝑁)C𝑁) ∈ ℕ) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
5856, 14, 57syl2anr 598 . . . . . . . . 9 ((𝜑𝑛 ∈ ℙ) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
5958ralrimiva 3185 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ℙ (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
6055, 59pcmptcl 16230 . . . . . . 7 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
6160simprd 498 . . . . . 6 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
62 bpos.2 . . . . . . . . 9 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
63 bpos.4 . . . . . . . . 9 𝐾 = (⌊‘((2 · 𝑁) / 3))
64 bpos.5 . . . . . . . . 9 𝑀 = (⌊‘(√‘(2 · 𝑁)))
653, 62, 55, 63, 64bposlem4 25866 . . . . . . . 8 (𝜑𝑀 ∈ (3...𝐾))
66 elfzuz 12907 . . . . . . . 8 (𝑀 ∈ (3...𝐾) → 𝑀 ∈ (ℤ‘3))
6765, 66syl 17 . . . . . . 7 (𝜑𝑀 ∈ (ℤ‘3))
68 eluznn 12321 . . . . . . 7 ((3 ∈ ℕ ∧ 𝑀 ∈ (ℤ‘3)) → 𝑀 ∈ ℕ)
6923, 67, 68sylancr 589 . . . . . 6 (𝜑𝑀 ∈ ℕ)
7061, 69ffvelrnd 6855 . . . . 5 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℕ)
7170nnred 11656 . . . 4 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℝ)
72 2z 12017 . . . . . . . . 9 2 ∈ ℤ
73 nndivre 11681 . . . . . . . . . . . 12 (((2 · 𝑁) ∈ ℝ ∧ 3 ∈ ℕ) → ((2 · 𝑁) / 3) ∈ ℝ)
7420, 23, 73sylancl 588 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) / 3) ∈ ℝ)
7574flcld 13171 . . . . . . . . . 10 (𝜑 → (⌊‘((2 · 𝑁) / 3)) ∈ ℤ)
7663, 75eqeltrid 2920 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
77 zmulcl 12034 . . . . . . . . 9 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 · 𝐾) ∈ ℤ)
7872, 76, 77sylancr 589 . . . . . . . 8 (𝜑 → (2 · 𝐾) ∈ ℤ)
792nnzi 12009 . . . . . . . 8 5 ∈ ℤ
80 zsubcl 12027 . . . . . . . 8 (((2 · 𝐾) ∈ ℤ ∧ 5 ∈ ℤ) → ((2 · 𝐾) − 5) ∈ ℤ)
8178, 79, 80sylancl 588 . . . . . . 7 (𝜑 → ((2 · 𝐾) − 5) ∈ ℤ)
8281zred 12090 . . . . . 6 (𝜑 → ((2 · 𝐾) − 5) ∈ ℝ)
83 rpcxpcl 25262 . . . . . 6 ((2 ∈ ℝ+ ∧ ((2 · 𝐾) − 5) ∈ ℝ) → (2↑𝑐((2 · 𝐾) − 5)) ∈ ℝ+)
8431, 82, 83sylancr 589 . . . . 5 (𝜑 → (2↑𝑐((2 · 𝐾) − 5)) ∈ ℝ+)
8584rpred 12434 . . . 4 (𝜑 → (2↑𝑐((2 · 𝐾) − 5)) ∈ ℝ)
8671, 85remulcld 10674 . . 3 (𝜑 → ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5))) ∈ ℝ)
873, 62, 55, 63bposlem3 25865 . . . 4 (𝜑 → (seq1( · , 𝐹)‘𝐾) = ((2 · 𝑁)C𝑁))
88 elfzuz3 12908 . . . . . . . . . 10 (𝑀 ∈ (3...𝐾) → 𝐾 ∈ (ℤ𝑀))
8965, 88syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ (ℤ𝑀))
9055, 59, 69, 89pcmptdvds 16233 . . . . . . . 8 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∥ (seq1( · , 𝐹)‘𝐾))
9170nnzd 12089 . . . . . . . . 9 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℤ)
9270nnne0d 11690 . . . . . . . . 9 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≠ 0)
93 uztrn 12264 . . . . . . . . . . . . 13 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑀 ∈ (ℤ‘3)) → 𝐾 ∈ (ℤ‘3))
9489, 67, 93syl2anc 586 . . . . . . . . . . . 12 (𝜑𝐾 ∈ (ℤ‘3))
95 eluznn 12321 . . . . . . . . . . . 12 ((3 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘3)) → 𝐾 ∈ ℕ)
9623, 94, 95sylancr 589 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℕ)
9761, 96ffvelrnd 6855 . . . . . . . . . 10 (𝜑 → (seq1( · , 𝐹)‘𝐾) ∈ ℕ)
9897nnzd 12089 . . . . . . . . 9 (𝜑 → (seq1( · , 𝐹)‘𝐾) ∈ ℤ)
99 dvdsval2 15613 . . . . . . . . 9 (((seq1( · , 𝐹)‘𝑀) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑀) ≠ 0 ∧ (seq1( · , 𝐹)‘𝐾) ∈ ℤ) → ((seq1( · , 𝐹)‘𝑀) ∥ (seq1( · , 𝐹)‘𝐾) ↔ ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∈ ℤ))
10091, 92, 98, 99syl3anc 1367 . . . . . . . 8 (𝜑 → ((seq1( · , 𝐹)‘𝑀) ∥ (seq1( · , 𝐹)‘𝐾) ↔ ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∈ ℤ))
10190, 100mpbid 234 . . . . . . 7 (𝜑 → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∈ ℤ)
102101zred 12090 . . . . . 6 (𝜑 → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∈ ℝ)
10369nnred 11656 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
10476zred 12090 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
105 eluzle 12259 . . . . . . . . . 10 (𝐾 ∈ (ℤ𝑀) → 𝑀𝐾)
10689, 105syl 17 . . . . . . . . 9 (𝜑𝑀𝐾)
107 efchtdvds 25739 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑀𝐾) → (exp‘(θ‘𝑀)) ∥ (exp‘(θ‘𝐾)))
108103, 104, 106, 107syl3anc 1367 . . . . . . . 8 (𝜑 → (exp‘(θ‘𝑀)) ∥ (exp‘(θ‘𝐾)))
109 efchtcl 25691 . . . . . . . . . . 11 (𝑀 ∈ ℝ → (exp‘(θ‘𝑀)) ∈ ℕ)
110103, 109syl 17 . . . . . . . . . 10 (𝜑 → (exp‘(θ‘𝑀)) ∈ ℕ)
111110nnzd 12089 . . . . . . . . 9 (𝜑 → (exp‘(θ‘𝑀)) ∈ ℤ)
112110nnne0d 11690 . . . . . . . . 9 (𝜑 → (exp‘(θ‘𝑀)) ≠ 0)
113 efchtcl 25691 . . . . . . . . . . 11 (𝐾 ∈ ℝ → (exp‘(θ‘𝐾)) ∈ ℕ)
114104, 113syl 17 . . . . . . . . . 10 (𝜑 → (exp‘(θ‘𝐾)) ∈ ℕ)
115114nnzd 12089 . . . . . . . . 9 (𝜑 → (exp‘(θ‘𝐾)) ∈ ℤ)
116 dvdsval2 15613 . . . . . . . . 9 (((exp‘(θ‘𝑀)) ∈ ℤ ∧ (exp‘(θ‘𝑀)) ≠ 0 ∧ (exp‘(θ‘𝐾)) ∈ ℤ) → ((exp‘(θ‘𝑀)) ∥ (exp‘(θ‘𝐾)) ↔ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℤ))
117111, 112, 115, 116syl3anc 1367 . . . . . . . 8 (𝜑 → ((exp‘(θ‘𝑀)) ∥ (exp‘(θ‘𝐾)) ↔ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℤ))
118108, 117mpbid 234 . . . . . . 7 (𝜑 → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℤ)
119118zred 12090 . . . . . 6 (𝜑 → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℝ)
120 prmz 16022 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
121 fllt 13179 . . . . . . . . . . . . . . . . . 18 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 𝑝 ∈ ℤ) → ((√‘(2 · 𝑁)) < 𝑝 ↔ (⌊‘(√‘(2 · 𝑁))) < 𝑝))
12222, 120, 121syl2an 597 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → ((√‘(2 · 𝑁)) < 𝑝 ↔ (⌊‘(√‘(2 · 𝑁))) < 𝑝))
12364breq1i 5076 . . . . . . . . . . . . . . . . 17 (𝑀 < 𝑝 ↔ (⌊‘(√‘(2 · 𝑁))) < 𝑝)
124122, 123syl6bbr 291 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → ((√‘(2 · 𝑁)) < 𝑝𝑀 < 𝑝))
125120zred 12090 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
126 ltnle 10723 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝑀 < 𝑝 ↔ ¬ 𝑝𝑀))
127103, 125, 126syl2an 597 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → (𝑀 < 𝑝 ↔ ¬ 𝑝𝑀))
128124, 127bitrd 281 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → ((√‘(2 · 𝑁)) < 𝑝 ↔ ¬ 𝑝𝑀))
129 bposlem1 25863 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
1305, 129sylan 582 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
131125adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℝ)
132 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
133 pccl 16189 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ ((2 · 𝑁)C𝑁) ∈ ℕ) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
134132, 14, 133syl2anr 598 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
135131, 134reexpcld 13530 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ)
13620adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ ℙ) → (2 · 𝑁) ∈ ℝ)
137131resqcld 13614 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ ℙ) → (𝑝↑2) ∈ ℝ)
138 lelttr 10734 . . . . . . . . . . . . . . . . . . . 20 (((𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ (𝑝↑2) ∈ ℝ) → (((𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁) ∧ (2 · 𝑁) < (𝑝↑2)) → (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) < (𝑝↑2)))
139135, 136, 137, 138syl3anc 1367 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ℙ) → (((𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁) ∧ (2 · 𝑁) < (𝑝↑2)) → (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) < (𝑝↑2)))
140130, 139mpand 693 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ ℙ) → ((2 · 𝑁) < (𝑝↑2) → (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) < (𝑝↑2)))
141 resqrtth 14618 . . . . . . . . . . . . . . . . . . . . 21 (((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁)) → ((√‘(2 · 𝑁))↑2) = (2 · 𝑁))
14220, 21, 141syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((√‘(2 · 𝑁))↑2) = (2 · 𝑁))
143142breq1d 5079 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((√‘(2 · 𝑁))↑2) < (𝑝↑2) ↔ (2 · 𝑁) < (𝑝↑2)))
144143adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ ℙ) → (((√‘(2 · 𝑁))↑2) < (𝑝↑2) ↔ (2 · 𝑁) < (𝑝↑2)))
145134nn0zd 12088 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ)
14672a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ℙ) → 2 ∈ ℤ)
147 prmgt1 16044 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℙ → 1 < 𝑝)
148147adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ ℙ) → 1 < 𝑝)
149131, 145, 146, 148ltexp2d 13617 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ ℙ) → ((𝑝 pCnt ((2 · 𝑁)C𝑁)) < 2 ↔ (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) < (𝑝↑2)))
150140, 144, 1493imtr4d 296 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → (((√‘(2 · 𝑁))↑2) < (𝑝↑2) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) < 2))
151 df-2 11703 . . . . . . . . . . . . . . . . . 18 2 = (1 + 1)
152151breq2i 5077 . . . . . . . . . . . . . . . . 17 ((𝑝 pCnt ((2 · 𝑁)C𝑁)) < 2 ↔ (𝑝 pCnt ((2 · 𝑁)C𝑁)) < (1 + 1))
153150, 152syl6ib 253 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → (((√‘(2 · 𝑁))↑2) < (𝑝↑2) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) < (1 + 1)))
15422adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → (√‘(2 · 𝑁)) ∈ ℝ)
15520, 21sqrtge0d 14783 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (√‘(2 · 𝑁)))
156155adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → 0 ≤ (√‘(2 · 𝑁)))
157 prmnn 16021 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
158157nnrpd 12432 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ+)
159158rpge0d 12438 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → 0 ≤ 𝑝)
160159adantl 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → 0 ≤ 𝑝)
161154, 131, 156, 160lt2sqd 13622 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → ((√‘(2 · 𝑁)) < 𝑝 ↔ ((√‘(2 · 𝑁))↑2) < (𝑝↑2)))
162 1z 12015 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
163 zleltp1 12036 . . . . . . . . . . . . . . . . 17 (((𝑝 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑝 pCnt ((2 · 𝑁)C𝑁)) ≤ 1 ↔ (𝑝 pCnt ((2 · 𝑁)C𝑁)) < (1 + 1)))
164145, 162, 163sylancl 588 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → ((𝑝 pCnt ((2 · 𝑁)C𝑁)) ≤ 1 ↔ (𝑝 pCnt ((2 · 𝑁)C𝑁)) < (1 + 1)))
165153, 161, 1643imtr4d 296 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → ((√‘(2 · 𝑁)) < 𝑝 → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ≤ 1))
166128, 165sylbird 262 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℙ) → (¬ 𝑝𝑀 → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ≤ 1))
167166imp 409 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝑀) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ≤ 1)
168167adantrl 714 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝐾 ∧ ¬ 𝑝𝑀)) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) ≤ 1)
169 iftrue 4476 . . . . . . . . . . . . 13 ((𝑝𝐾 ∧ ¬ 𝑝𝑀) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
170169adantl 484 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝐾 ∧ ¬ 𝑝𝑀)) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
171 iftrue 4476 . . . . . . . . . . . . 13 ((𝑝𝐾 ∧ ¬ 𝑝𝑀) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0) = 1)
172171adantl 484 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝐾 ∧ ¬ 𝑝𝑀)) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0) = 1)
173168, 170, 1723brtr4d 5101 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝐾 ∧ ¬ 𝑝𝑀)) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) ≤ if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0))
174 0le0 11741 . . . . . . . . . . . . 13 0 ≤ 0
175 iffalse 4479 . . . . . . . . . . . . . 14 (¬ (𝑝𝐾 ∧ ¬ 𝑝𝑀) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = 0)
176 iffalse 4479 . . . . . . . . . . . . . 14 (¬ (𝑝𝐾 ∧ ¬ 𝑝𝑀) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0) = 0)
177175, 176breq12d 5082 . . . . . . . . . . . . 13 (¬ (𝑝𝐾 ∧ ¬ 𝑝𝑀) → (if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) ≤ if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0) ↔ 0 ≤ 0))
178174, 177mpbiri 260 . . . . . . . . . . . 12 (¬ (𝑝𝐾 ∧ ¬ 𝑝𝑀) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) ≤ if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0))
179178adantl 484 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ ¬ (𝑝𝐾 ∧ ¬ 𝑝𝑀)) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) ≤ if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0))
180173, 179pm2.61dan 811 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) ≤ if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0))
18159adantr 483 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → ∀𝑛 ∈ ℙ (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
18269adantr 483 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → 𝑀 ∈ ℕ)
183 simpr 487 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
184 oveq1 7166 . . . . . . . . . . 11 (𝑛 = 𝑝 → (𝑛 pCnt ((2 · 𝑁)C𝑁)) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
18589adantr 483 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → 𝐾 ∈ (ℤ𝑀))
18655, 181, 182, 183, 184, 185pcmpt2 16232 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀))) = if((𝑝𝐾 ∧ ¬ 𝑝𝑀), (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0))
187 eqid 2824 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
188187prmorcht 25758 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℕ → (exp‘(θ‘𝐾)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝐾))
18996, 188syl 17 . . . . . . . . . . . . . 14 (𝜑 → (exp‘(θ‘𝐾)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝐾))
190187prmorcht 25758 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (exp‘(θ‘𝑀)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑀))
19169, 190syl 17 . . . . . . . . . . . . . 14 (𝜑 → (exp‘(θ‘𝑀)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑀))
192189, 191oveq12d 7177 . . . . . . . . . . . . 13 (𝜑 → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝐾) / (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑀)))
193192adantr 483 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝐾) / (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑀)))
194193oveq2d 7175 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))) = (𝑝 pCnt ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝐾) / (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑀))))
195 nncn 11649 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
196195exp1d 13508 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛↑1) = 𝑛)
197196ifeq1d 4488 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → if(𝑛 ∈ ℙ, (𝑛↑1), 1) = if(𝑛 ∈ ℙ, 𝑛, 1))
198197mpteq2ia 5160 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑1), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
199198eqcomi 2833 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑1), 1))
200 1nn0 11916 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
201200a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℙ) → 1 ∈ ℕ0)
202201ralrimiva 3185 . . . . . . . . . . . . 13 (𝜑 → ∀𝑛 ∈ ℙ 1 ∈ ℕ0)
203202adantr 483 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → ∀𝑛 ∈ ℙ 1 ∈ ℕ0)
204 eqidd 2825 . . . . . . . . . . . 12 (𝑛 = 𝑝 → 1 = 1)
205199, 203, 182, 183, 204, 185pcmpt2 16232 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝐾) / (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑀))) = if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0))
206194, 205eqtrd 2859 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))) = if((𝑝𝐾 ∧ ¬ 𝑝𝑀), 1, 0))
207180, 186, 2063brtr4d 5101 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀))) ≤ (𝑝 pCnt ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))))
208207ralrimiva 3185 . . . . . . . 8 (𝜑 → ∀𝑝 ∈ ℙ (𝑝 pCnt ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀))) ≤ (𝑝 pCnt ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))))
209 pc2dvds 16218 . . . . . . . . 9 ((((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∈ ℤ ∧ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℤ) → (((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∥ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀))) ≤ (𝑝 pCnt ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))))))
210101, 118, 209syl2anc 586 . . . . . . . 8 (𝜑 → (((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∥ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀))) ≤ (𝑝 pCnt ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))))))
211208, 210mpbird 259 . . . . . . 7 (𝜑 → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∥ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))))
212114nnred 11656 . . . . . . . . . 10 (𝜑 → (exp‘(θ‘𝐾)) ∈ ℝ)
213110nnred 11656 . . . . . . . . . 10 (𝜑 → (exp‘(θ‘𝑀)) ∈ ℝ)
214114nngt0d 11689 . . . . . . . . . 10 (𝜑 → 0 < (exp‘(θ‘𝐾)))
215110nngt0d 11689 . . . . . . . . . 10 (𝜑 → 0 < (exp‘(θ‘𝑀)))
216212, 213, 214, 215divgt0d 11578 . . . . . . . . 9 (𝜑 → 0 < ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))))
217 elnnz 11994 . . . . . . . . 9 (((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℕ ↔ (((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℤ ∧ 0 < ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))))
218118, 216, 217sylanbrc 585 . . . . . . . 8 (𝜑 → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℕ)
219 dvdsle 15663 . . . . . . . 8 ((((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∈ ℤ ∧ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) ∈ ℕ) → (((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∥ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ≤ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))))
220101, 218, 219syl2anc 586 . . . . . . 7 (𝜑 → (((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ∥ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ≤ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀)))))
221211, 220mpd 15 . . . . . 6 (𝜑 → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) ≤ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))))
222 nndivre 11681 . . . . . . . 8 (((exp‘(θ‘𝐾)) ∈ ℝ ∧ 4 ∈ ℕ) → ((exp‘(θ‘𝐾)) / 4) ∈ ℝ)
223212, 1, 222sylancl 588 . . . . . . 7 (𝜑 → ((exp‘(θ‘𝐾)) / 4) ∈ ℝ)
224 4re 11724 . . . . . . . . . 10 4 ∈ ℝ
225224a1i 11 . . . . . . . . 9 (𝜑 → 4 ∈ ℝ)
226 6re 11730 . . . . . . . . . 10 6 ∈ ℝ
227226a1i 11 . . . . . . . . 9 (𝜑 → 6 ∈ ℝ)
228 4lt6 11822 . . . . . . . . . 10 4 < 6
229228a1i 11 . . . . . . . . 9 (𝜑 → 4 < 6)
230 cht3 25753 . . . . . . . . . . . 12 (θ‘3) = (log‘6)
231230fveq2i 6676 . . . . . . . . . . 11 (exp‘(θ‘3)) = (exp‘(log‘6))
232 6pos 11750 . . . . . . . . . . . . 13 0 < 6
233226, 232elrpii 12395 . . . . . . . . . . . 12 6 ∈ ℝ+
234 reeflog 25167 . . . . . . . . . . . 12 (6 ∈ ℝ+ → (exp‘(log‘6)) = 6)
235233, 234ax-mp 5 . . . . . . . . . . 11 (exp‘(log‘6)) = 6
236231, 235eqtri 2847 . . . . . . . . . 10 (exp‘(θ‘3)) = 6
237 3re 11720 . . . . . . . . . . . . 13 3 ∈ ℝ
238237a1i 11 . . . . . . . . . . . 12 (𝜑 → 3 ∈ ℝ)
239 eluzle 12259 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘3) → 3 ≤ 𝑀)
24067, 239syl 17 . . . . . . . . . . . 12 (𝜑 → 3 ≤ 𝑀)
241 chtwordi 25736 . . . . . . . . . . . 12 ((3 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 3 ≤ 𝑀) → (θ‘3) ≤ (θ‘𝑀))
242238, 103, 240, 241syl3anc 1367 . . . . . . . . . . 11 (𝜑 → (θ‘3) ≤ (θ‘𝑀))
243 chtcl 25689 . . . . . . . . . . . . 13 (3 ∈ ℝ → (θ‘3) ∈ ℝ)
244237, 243ax-mp 5 . . . . . . . . . . . 12 (θ‘3) ∈ ℝ
245 chtcl 25689 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ → (θ‘𝑀) ∈ ℝ)
246103, 245syl 17 . . . . . . . . . . . 12 (𝜑 → (θ‘𝑀) ∈ ℝ)
247 efle 15474 . . . . . . . . . . . 12 (((θ‘3) ∈ ℝ ∧ (θ‘𝑀) ∈ ℝ) → ((θ‘3) ≤ (θ‘𝑀) ↔ (exp‘(θ‘3)) ≤ (exp‘(θ‘𝑀))))
248244, 246, 247sylancr 589 . . . . . . . . . . 11 (𝜑 → ((θ‘3) ≤ (θ‘𝑀) ↔ (exp‘(θ‘3)) ≤ (exp‘(θ‘𝑀))))
249242, 248mpbid 234 . . . . . . . . . 10 (𝜑 → (exp‘(θ‘3)) ≤ (exp‘(θ‘𝑀)))
250236, 249eqbrtrrid 5105 . . . . . . . . 9 (𝜑 → 6 ≤ (exp‘(θ‘𝑀)))
251225, 227, 213, 229, 250ltletrd 10803 . . . . . . . 8 (𝜑 → 4 < (exp‘(θ‘𝑀)))
252 4pos 11747 . . . . . . . . . 10 0 < 4
253252a1i 11 . . . . . . . . 9 (𝜑 → 0 < 4)
254 ltdiv2 11529 . . . . . . . . 9 (((4 ∈ ℝ ∧ 0 < 4) ∧ ((exp‘(θ‘𝑀)) ∈ ℝ ∧ 0 < (exp‘(θ‘𝑀))) ∧ ((exp‘(θ‘𝐾)) ∈ ℝ ∧ 0 < (exp‘(θ‘𝐾)))) → (4 < (exp‘(θ‘𝑀)) ↔ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) < ((exp‘(θ‘𝐾)) / 4)))
255225, 253, 213, 215, 212, 214, 254syl222anc 1382 . . . . . . . 8 (𝜑 → (4 < (exp‘(θ‘𝑀)) ↔ ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) < ((exp‘(θ‘𝐾)) / 4)))
256251, 255mpbid 234 . . . . . . 7 (𝜑 → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) < ((exp‘(θ‘𝐾)) / 4))
25726a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℝ)
258 2lt3 11812 . . . . . . . . . . . . . 14 2 < 3
259258a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 < 3)
260238, 103, 104, 240, 106letrd 10800 . . . . . . . . . . . . 13 (𝜑 → 3 ≤ 𝐾)
261257, 238, 104, 259, 260ltletrd 10803 . . . . . . . . . . . 12 (𝜑 → 2 < 𝐾)
262 chtub 25791 . . . . . . . . . . . 12 ((𝐾 ∈ ℝ ∧ 2 < 𝐾) → (θ‘𝐾) < ((log‘2) · ((2 · 𝐾) − 3)))
263104, 261, 262syl2anc 586 . . . . . . . . . . 11 (𝜑 → (θ‘𝐾) < ((log‘2) · ((2 · 𝐾) − 3)))
264 chtcl 25689 . . . . . . . . . . . . 13 (𝐾 ∈ ℝ → (θ‘𝐾) ∈ ℝ)
265104, 264syl 17 . . . . . . . . . . . 12 (𝜑 → (θ‘𝐾) ∈ ℝ)
266 relogcl 25162 . . . . . . . . . . . . . 14 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
26731, 266ax-mp 5 . . . . . . . . . . . . 13 (log‘2) ∈ ℝ
268 3z 12018 . . . . . . . . . . . . . . 15 3 ∈ ℤ
269 zsubcl 12027 . . . . . . . . . . . . . . 15 (((2 · 𝐾) ∈ ℤ ∧ 3 ∈ ℤ) → ((2 · 𝐾) − 3) ∈ ℤ)
27078, 268, 269sylancl 588 . . . . . . . . . . . . . 14 (𝜑 → ((2 · 𝐾) − 3) ∈ ℤ)
271270zred 12090 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝐾) − 3) ∈ ℝ)
272 remulcl 10625 . . . . . . . . . . . . 13 (((log‘2) ∈ ℝ ∧ ((2 · 𝐾) − 3) ∈ ℝ) → ((log‘2) · ((2 · 𝐾) − 3)) ∈ ℝ)
273267, 271, 272sylancr 589 . . . . . . . . . . . 12 (𝜑 → ((log‘2) · ((2 · 𝐾) − 3)) ∈ ℝ)
274 eflt 15473 . . . . . . . . . . . 12 (((θ‘𝐾) ∈ ℝ ∧ ((log‘2) · ((2 · 𝐾) − 3)) ∈ ℝ) → ((θ‘𝐾) < ((log‘2) · ((2 · 𝐾) − 3)) ↔ (exp‘(θ‘𝐾)) < (exp‘((log‘2) · ((2 · 𝐾) − 3)))))
275265, 273, 274syl2anc 586 . . . . . . . . . . 11 (𝜑 → ((θ‘𝐾) < ((log‘2) · ((2 · 𝐾) − 3)) ↔ (exp‘(θ‘𝐾)) < (exp‘((log‘2) · ((2 · 𝐾) − 3)))))
276263, 275mpbid 234 . . . . . . . . . 10 (𝜑 → (exp‘(θ‘𝐾)) < (exp‘((log‘2) · ((2 · 𝐾) − 3))))
277 reexplog 25181 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ ((2 · 𝐾) − 3) ∈ ℤ) → (2↑((2 · 𝐾) − 3)) = (exp‘(((2 · 𝐾) − 3) · (log‘2))))
27831, 270, 277sylancr 589 . . . . . . . . . . 11 (𝜑 → (2↑((2 · 𝐾) − 3)) = (exp‘(((2 · 𝐾) − 3) · (log‘2))))
279270zcnd 12091 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝐾) − 3) ∈ ℂ)
280267recni 10658 . . . . . . . . . . . . 13 (log‘2) ∈ ℂ
281 mulcom 10626 . . . . . . . . . . . . 13 ((((2 · 𝐾) − 3) ∈ ℂ ∧ (log‘2) ∈ ℂ) → (((2 · 𝐾) − 3) · (log‘2)) = ((log‘2) · ((2 · 𝐾) − 3)))
282279, 280, 281sylancl 588 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝐾) − 3) · (log‘2)) = ((log‘2) · ((2 · 𝐾) − 3)))
283282fveq2d 6677 . . . . . . . . . . 11 (𝜑 → (exp‘(((2 · 𝐾) − 3) · (log‘2))) = (exp‘((log‘2) · ((2 · 𝐾) − 3))))
284278, 283eqtrd 2859 . . . . . . . . . 10 (𝜑 → (2↑((2 · 𝐾) − 3)) = (exp‘((log‘2) · ((2 · 𝐾) − 3))))
285276, 284breqtrrd 5097 . . . . . . . . 9 (𝜑 → (exp‘(θ‘𝐾)) < (2↑((2 · 𝐾) − 3)))
286 3p2e5 11791 . . . . . . . . . . . . . . . 16 (3 + 2) = 5
287286oveq1i 7169 . . . . . . . . . . . . . . 15 ((3 + 2) − 2) = (5 − 2)
288 3cn 11721 . . . . . . . . . . . . . . . 16 3 ∈ ℂ
289 2cn 11715 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
290288, 289pncan3oi 10905 . . . . . . . . . . . . . . 15 ((3 + 2) − 2) = 3
291287, 290eqtr3i 2849 . . . . . . . . . . . . . 14 (5 − 2) = 3
292291oveq2i 7170 . . . . . . . . . . . . 13 ((2 · 𝐾) − (5 − 2)) = ((2 · 𝐾) − 3)
29378zcnd 12091 . . . . . . . . . . . . . 14 (𝜑 → (2 · 𝐾) ∈ ℂ)
294 5cn 11728 . . . . . . . . . . . . . . 15 5 ∈ ℂ
295 subsub 10919 . . . . . . . . . . . . . . 15 (((2 · 𝐾) ∈ ℂ ∧ 5 ∈ ℂ ∧ 2 ∈ ℂ) → ((2 · 𝐾) − (5 − 2)) = (((2 · 𝐾) − 5) + 2))
296294, 289, 295mp3an23 1449 . . . . . . . . . . . . . 14 ((2 · 𝐾) ∈ ℂ → ((2 · 𝐾) − (5 − 2)) = (((2 · 𝐾) − 5) + 2))
297293, 296syl 17 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝐾) − (5 − 2)) = (((2 · 𝐾) − 5) + 2))
298292, 297syl5eqr 2873 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝐾) − 3) = (((2 · 𝐾) − 5) + 2))
299298oveq2d 7175 . . . . . . . . . . 11 (𝜑 → (2↑𝑐((2 · 𝐾) − 3)) = (2↑𝑐(((2 · 𝐾) − 5) + 2)))
300 2ne0 11744 . . . . . . . . . . . 12 2 ≠ 0
301 cxpexpz 25253 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ ((2 · 𝐾) − 3) ∈ ℤ) → (2↑𝑐((2 · 𝐾) − 3)) = (2↑((2 · 𝐾) − 3)))
302289, 300, 270, 301mp3an12i 1461 . . . . . . . . . . 11 (𝜑 → (2↑𝑐((2 · 𝐾) − 3)) = (2↑((2 · 𝐾) − 3)))
30381zcnd 12091 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝐾) − 5) ∈ ℂ)
304 2cnne0 11850 . . . . . . . . . . . . 13 (2 ∈ ℂ ∧ 2 ≠ 0)
305 cxpadd 25265 . . . . . . . . . . . . 13 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2 · 𝐾) − 5) ∈ ℂ ∧ 2 ∈ ℂ) → (2↑𝑐(((2 · 𝐾) − 5) + 2)) = ((2↑𝑐((2 · 𝐾) − 5)) · (2↑𝑐2)))
306304, 289, 305mp3an13 1448 . . . . . . . . . . . 12 (((2 · 𝐾) − 5) ∈ ℂ → (2↑𝑐(((2 · 𝐾) − 5) + 2)) = ((2↑𝑐((2 · 𝐾) − 5)) · (2↑𝑐2)))
307303, 306syl 17 . . . . . . . . . . 11 (𝜑 → (2↑𝑐(((2 · 𝐾) − 5) + 2)) = ((2↑𝑐((2 · 𝐾) − 5)) · (2↑𝑐2)))
308299, 302, 3073eqtr3d 2867 . . . . . . . . . 10 (𝜑 → (2↑((2 · 𝐾) − 3)) = ((2↑𝑐((2 · 𝐾) − 5)) · (2↑𝑐2)))
309 2nn0 11917 . . . . . . . . . . . . 13 2 ∈ ℕ0
310 cxpexp 25254 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 2 ∈ ℕ0) → (2↑𝑐2) = (2↑2))
311289, 309, 310mp2an 690 . . . . . . . . . . . 12 (2↑𝑐2) = (2↑2)
312 sq2 13563 . . . . . . . . . . . 12 (2↑2) = 4
313311, 312eqtri 2847 . . . . . . . . . . 11 (2↑𝑐2) = 4
314313oveq2i 7170 . . . . . . . . . 10 ((2↑𝑐((2 · 𝐾) − 5)) · (2↑𝑐2)) = ((2↑𝑐((2 · 𝐾) − 5)) · 4)
315308, 314syl6eq 2875 . . . . . . . . 9 (𝜑 → (2↑((2 · 𝐾) − 3)) = ((2↑𝑐((2 · 𝐾) − 5)) · 4))
316285, 315breqtrd 5095 . . . . . . . 8 (𝜑 → (exp‘(θ‘𝐾)) < ((2↑𝑐((2 · 𝐾) − 5)) · 4))
317224, 252pm3.2i 473 . . . . . . . . . 10 (4 ∈ ℝ ∧ 0 < 4)
318317a1i 11 . . . . . . . . 9 (𝜑 → (4 ∈ ℝ ∧ 0 < 4))
319 ltdivmul2 11520 . . . . . . . . 9 (((exp‘(θ‘𝐾)) ∈ ℝ ∧ (2↑𝑐((2 · 𝐾) − 5)) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → (((exp‘(θ‘𝐾)) / 4) < (2↑𝑐((2 · 𝐾) − 5)) ↔ (exp‘(θ‘𝐾)) < ((2↑𝑐((2 · 𝐾) − 5)) · 4)))
320212, 85, 318, 319syl3anc 1367 . . . . . . . 8 (𝜑 → (((exp‘(θ‘𝐾)) / 4) < (2↑𝑐((2 · 𝐾) − 5)) ↔ (exp‘(θ‘𝐾)) < ((2↑𝑐((2 · 𝐾) − 5)) · 4)))
321316, 320mpbird 259 . . . . . . 7 (𝜑 → ((exp‘(θ‘𝐾)) / 4) < (2↑𝑐((2 · 𝐾) − 5)))
322119, 223, 85, 256, 321lttrd 10804 . . . . . 6 (𝜑 → ((exp‘(θ‘𝐾)) / (exp‘(θ‘𝑀))) < (2↑𝑐((2 · 𝐾) − 5)))
323102, 119, 85, 221, 322lelttrd 10801 . . . . 5 (𝜑 → ((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) < (2↑𝑐((2 · 𝐾) − 5)))
32497nnred 11656 . . . . . 6 (𝜑 → (seq1( · , 𝐹)‘𝐾) ∈ ℝ)
325 nnre 11648 . . . . . . . 8 ((seq1( · , 𝐹)‘𝑀) ∈ ℕ → (seq1( · , 𝐹)‘𝑀) ∈ ℝ)
326 nngt0 11671 . . . . . . . 8 ((seq1( · , 𝐹)‘𝑀) ∈ ℕ → 0 < (seq1( · , 𝐹)‘𝑀))
327325, 326jca 514 . . . . . . 7 ((seq1( · , 𝐹)‘𝑀) ∈ ℕ → ((seq1( · , 𝐹)‘𝑀) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑀)))
32870, 327syl 17 . . . . . 6 (𝜑 → ((seq1( · , 𝐹)‘𝑀) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑀)))
329 ltdivmul 11518 . . . . . 6 (((seq1( · , 𝐹)‘𝐾) ∈ ℝ ∧ (2↑𝑐((2 · 𝐾) − 5)) ∈ ℝ ∧ ((seq1( · , 𝐹)‘𝑀) ∈ ℝ ∧ 0 < (seq1( · , 𝐹)‘𝑀))) → (((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) < (2↑𝑐((2 · 𝐾) − 5)) ↔ (seq1( · , 𝐹)‘𝐾) < ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5)))))
330324, 85, 328, 329syl3anc 1367 . . . . 5 (𝜑 → (((seq1( · , 𝐹)‘𝐾) / (seq1( · , 𝐹)‘𝑀)) < (2↑𝑐((2 · 𝐾) − 5)) ↔ (seq1( · , 𝐹)‘𝐾) < ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5)))))
331323, 330mpbid 234 . . . 4 (𝜑 → (seq1( · , 𝐹)‘𝐾) < ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5))))
33287, 331eqbrtrrd 5093 . . 3 (𝜑 → ((2 · 𝑁)C𝑁) < ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5))))
33330, 85remulcld 10674 . . . 4 (𝜑 → (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐((2 · 𝐾) − 5))) ∈ ℝ)
3343, 62, 55, 63, 64bposlem5 25867 . . . . 5 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)))
33571, 30, 84lemul1d 12477 . . . . 5 (𝜑 → ((seq1( · , 𝐹)‘𝑀) ≤ ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) ↔ ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5))) ≤ (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐((2 · 𝐾) − 5)))))
336334, 335mpbid 234 . . . 4 (𝜑 → ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5))) ≤ (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐((2 · 𝐾) − 5))))
33778zred 12090 . . . . . . 7 (𝜑 → (2 · 𝐾) ∈ ℝ)
33837a1i 11 . . . . . . 7 (𝜑 → 5 ∈ ℝ)
339 flle 13172 . . . . . . . . . . 11 (((2 · 𝑁) / 3) ∈ ℝ → (⌊‘((2 · 𝑁) / 3)) ≤ ((2 · 𝑁) / 3))
34074, 339syl 17 . . . . . . . . . 10 (𝜑 → (⌊‘((2 · 𝑁) / 3)) ≤ ((2 · 𝑁) / 3))
34163, 340eqbrtrid 5104 . . . . . . . . 9 (𝜑𝐾 ≤ ((2 · 𝑁) / 3))
342 2pos 11743 . . . . . . . . . . . 12 0 < 2
34326, 342pm3.2i 473 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
344343a1i 11 . . . . . . . . . 10 (𝜑 → (2 ∈ ℝ ∧ 0 < 2))
345 lemul2 11496 . . . . . . . . . 10 ((𝐾 ∈ ℝ ∧ ((2 · 𝑁) / 3) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐾 ≤ ((2 · 𝑁) / 3) ↔ (2 · 𝐾) ≤ (2 · ((2 · 𝑁) / 3))))
346104, 74, 344, 345syl3anc 1367 . . . . . . . . 9 (𝜑 → (𝐾 ≤ ((2 · 𝑁) / 3) ↔ (2 · 𝐾) ≤ (2 · ((2 · 𝑁) / 3))))
347341, 346mpbid 234 . . . . . . . 8 (𝜑 → (2 · 𝐾) ≤ (2 · ((2 · 𝑁) / 3)))
34818nncnd 11657 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℂ)
349 3ne0 11746 . . . . . . . . . . . 12 3 ≠ 0
350288, 349pm3.2i 473 . . . . . . . . . . 11 (3 ∈ ℂ ∧ 3 ≠ 0)
351 divass 11319 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (2 · 𝑁) ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((2 · (2 · 𝑁)) / 3) = (2 · ((2 · 𝑁) / 3)))
352289, 350, 351mp3an13 1448 . . . . . . . . . 10 ((2 · 𝑁) ∈ ℂ → ((2 · (2 · 𝑁)) / 3) = (2 · ((2 · 𝑁) / 3)))
353348, 352syl 17 . . . . . . . . 9 (𝜑 → ((2 · (2 · 𝑁)) / 3) = (2 · ((2 · 𝑁) / 3)))
354 2t2e4 11804 . . . . . . . . . . . 12 (2 · 2) = 4
355354oveq1i 7169 . . . . . . . . . . 11 ((2 · 2) · 𝑁) = (4 · 𝑁)
3565nncnd 11657 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
357 mulass 10628 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((2 · 2) · 𝑁) = (2 · (2 · 𝑁)))
358289, 289, 356, 357mp3an12i 1461 . . . . . . . . . . 11 (𝜑 → ((2 · 2) · 𝑁) = (2 · (2 · 𝑁)))
359355, 358syl5reqr 2874 . . . . . . . . . 10 (𝜑 → (2 · (2 · 𝑁)) = (4 · 𝑁))
360359oveq1d 7174 . . . . . . . . 9 (𝜑 → ((2 · (2 · 𝑁)) / 3) = ((4 · 𝑁) / 3))
361353, 360eqtr3d 2861 . . . . . . . 8 (𝜑 → (2 · ((2 · 𝑁) / 3)) = ((4 · 𝑁) / 3))
362347, 361breqtrd 5095 . . . . . . 7 (𝜑 → (2 · 𝐾) ≤ ((4 · 𝑁) / 3))
363337, 36, 338, 362lesub1dd 11259 . . . . . 6 (𝜑 → ((2 · 𝐾) − 5) ≤ (((4 · 𝑁) / 3) − 5))
364 1lt2 11811 . . . . . . . 8 1 < 2
365364a1i 11 . . . . . . 7 (𝜑 → 1 < 2)
366257, 365, 82, 39cxpled 25306 . . . . . 6 (𝜑 → (((2 · 𝐾) − 5) ≤ (((4 · 𝑁) / 3) − 5) ↔ (2↑𝑐((2 · 𝐾) − 5)) ≤ (2↑𝑐(((4 · 𝑁) / 3) − 5))))
367363, 366mpbid 234 . . . . 5 (𝜑 → (2↑𝑐((2 · 𝐾) − 5)) ≤ (2↑𝑐(((4 · 𝑁) / 3) − 5)))
36885, 42, 29lemul2d 12478 . . . . 5 (𝜑 → ((2↑𝑐((2 · 𝐾) − 5)) ≤ (2↑𝑐(((4 · 𝑁) / 3) − 5)) ↔ (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐((2 · 𝐾) − 5))) ≤ (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5)))))
369367, 368mpbid 234 . . . 4 (𝜑 → (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐((2 · 𝐾) − 5))) ≤ (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
37086, 333, 43, 336, 369letrd 10800 . . 3 (𝜑 → ((seq1( · , 𝐹)‘𝑀) · (2↑𝑐((2 · 𝐾) − 5))) ≤ (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
37115, 86, 43, 332, 370ltletrd 10803 . 2 (𝜑 → ((2 · 𝑁)C𝑁) < (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
37210, 15, 43, 54, 371lttrd 10804 1 (𝜑 → ((4↑𝑁) / 𝑁) < (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wne 3019  wral 3141  wrex 3142  ifcif 4470   class class class wbr 5069  cmpt 5149  wf 6354  cfv 6358  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545   < clt 10678  cle 10679  cmin 10873   / cdiv 11300  cn 11641  2c2 11695  3c3 11696  4c4 11697  5c5 11698  6c6 11699  0cn0 11900  cz 11984  cuz 12246  +crp 12392  ...cfz 12895  cfl 13163  seqcseq 13372  cexp 13432  Ccbc 13665  csqrt 14595  expce 15418  cdvds 15610  cprime 16018   pCnt cpc 16176  logclog 25141  𝑐ccxp 25142  θccht 25671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-xnn0 11971  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14429  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-limsup 14831  df-clim 14848  df-rlim 14849  df-sum 15046  df-ef 15424  df-sin 15426  df-cos 15427  df-pi 15429  df-dvds 15611  df-gcd 15847  df-prm 16019  df-pc 16177  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-limc 24467  df-dv 24468  df-log 25143  df-cxp 25144  df-cht 25677  df-ppi 25680
This theorem is referenced by:  bposlem9  25871
  Copyright terms: Public domain W3C validator