| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5nn | Structured version Visualization version GIF version | ||
| Description: 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 5nn | ⊢ 5 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12304 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 4nn 12321 | . . 3 ⊢ 4 ∈ ℕ | |
| 3 | peano2nn 12250 | . . 3 ⊢ (4 ∈ ℕ → (4 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (4 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2830 | 1 ⊢ 5 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 (class class class)co 7403 1c1 11128 + caddc 11130 ℕcn 12238 4c4 12295 5c5 12296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 ax-1cn 11185 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 |
| This theorem is referenced by: 6nn 12327 5nn0 12519 5eluz3 12899 5ndvds3 16430 5ndvds6 16431 prm23ge5 16833 dec5dvds 17082 dec5nprm 17084 dec2nprm 17085 5prm 17126 10nprm 17131 23prm 17136 prmlem2 17137 43prm 17139 83prm 17140 317prm 17143 prmo5 17146 scandx 17326 scaid 17327 lmodstr 17337 ipsstr 17348 ccondx 17425 ccoid 17426 slotsbhcdif 17427 slotsdifplendx2 17428 slotsdifocndx 17429 prdsvalstr 17464 catstr 17971 lt6abl 19874 psrvalstr 21874 log2ublem1 26906 log2ublem2 26907 log2ub 26909 birthday 26914 ppiublem1 27163 ppiublem2 27164 ppiub 27165 bclbnd 27241 bposlem3 27247 bposlem4 27248 bposlem5 27249 bposlem6 27250 bposlem8 27252 bposlem9 27253 lgsdir2lem3 27288 ex-eprel 30360 ex-xp 30363 fib6 34384 hgt750lem2 34630 hgt750leme 34636 12gcd5e1 41962 12lcm5e60 41967 lcm5un 41976 lcmineqlem 42011 3lexlogpow5ineq1 42013 3lexlogpow2ineq1 42017 3lexlogpow2ineq2 42018 3lexlogpow5ineq5 42019 aks4d1p1p6 42032 aks4d1p1 42035 5ne0 42257 rmydioph 42985 expdiophlem2 42993 algstr 43144 inductionexd 44126 plusmod5ne 47322 minusmod5ne 47326 minusmodnep2tmod 47330 257prm 47523 fmtno4prmfac193 47535 31prm 47559 41prothprm 47581 gbowge7 47725 gbege6 47727 stgoldbwt 47738 sbgoldbwt 47739 sbgoldbm 47746 sbgoldbo 47749 nnsum3primesle9 47756 gpg5order 48012 gpg5nbgrvtx13starlem1 48021 gpg5nbgrvtx13starlem2 48022 gpg5nbgrvtx13starlem3 48023 gpg5nbgr3star 48031 |
| Copyright terms: Public domain | W3C validator |