| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5nn | Structured version Visualization version GIF version | ||
| Description: 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 5nn | ⊢ 5 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12202 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 4nn 12219 | . . 3 ⊢ 4 ∈ ℕ | |
| 3 | peano2nn 12148 | . . 3 ⊢ (4 ∈ ℕ → (4 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (4 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2829 | 1 ⊢ 5 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 (class class class)co 7355 1c1 11018 + caddc 11020 ℕcn 12136 4c4 12193 5c5 12194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 ax-1cn 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 |
| This theorem is referenced by: 6nn 12225 5nn0 12412 5eluz3 12787 5ndvds3 16331 5ndvds6 16332 prm23ge5 16734 dec5dvds 16983 dec5nprm 16985 dec2nprm 16986 5prm 17027 10nprm 17032 23prm 17037 prmlem2 17038 43prm 17040 83prm 17041 317prm 17044 prmo5 17047 scandx 17225 scaid 17226 lmodstr 17236 ipsstr 17247 ccondx 17324 ccoid 17325 slotsbhcdif 17326 slotsdifplendx2 17327 slotsdifocndx 17328 prdsvalstr 17363 catstr 17875 lt6abl 19815 psrvalstr 21863 log2ublem1 26903 log2ublem2 26904 log2ub 26906 birthday 26911 ppiublem1 27160 ppiublem2 27161 ppiub 27162 bclbnd 27238 bposlem3 27244 bposlem4 27245 bposlem5 27246 bposlem6 27247 bposlem8 27249 bposlem9 27250 lgsdir2lem3 27285 ex-eprel 30434 ex-xp 30437 fib6 34491 hgt750lem2 34737 hgt750leme 34743 12gcd5e1 42169 12lcm5e60 42174 lcm5un 42183 lcmineqlem 42218 3lexlogpow5ineq1 42220 3lexlogpow2ineq1 42224 3lexlogpow2ineq2 42225 3lexlogpow5ineq5 42226 aks4d1p1p6 42239 aks4d1p1 42242 5ne0 42430 rmydioph 43171 expdiophlem2 43179 algstr 43330 inductionexd 44312 plusmod5ne 47507 minusmod5ne 47511 minusmodnep2tmod 47515 8mod5e3 47522 257prm 47723 fmtno4prmfac193 47735 31prm 47759 41prothprm 47781 gbowge7 47925 gbege6 47927 stgoldbwt 47938 sbgoldbwt 47939 sbgoldbm 47946 sbgoldbo 47949 nnsum3primesle9 47956 gpg5order 48222 gpg5nbgrvtx13starlem1 48233 gpg5nbgrvtx13starlem2 48234 gpg5nbgrvtx13starlem3 48235 gpg5nbgr3star 48243 gpg5grlim 48255 pgnioedg1 48270 pgnioedg2 48271 pgnioedg3 48272 pgnioedg4 48273 pgnbgreunbgrlem1 48275 pgnbgreunbgrlem2lem1 48276 pgnbgreunbgrlem2lem2 48277 pgnbgreunbgrlem2lem3 48278 pgnbgreunbgrlem4 48281 gpg5edgnedg 48292 grlimedgnedg 48293 |
| Copyright terms: Public domain | W3C validator |