| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5nn | Structured version Visualization version GIF version | ||
| Description: 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 5nn | ⊢ 5 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12212 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 4nn 12229 | . . 3 ⊢ 4 ∈ ℕ | |
| 3 | peano2nn 12158 | . . 3 ⊢ (4 ∈ ℕ → (4 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (4 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 5 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7353 1c1 11029 + caddc 11031 ℕcn 12146 4c4 12203 5c5 12204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-1cn 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 |
| This theorem is referenced by: 6nn 12235 5nn0 12422 5eluz3 12802 5ndvds3 16342 5ndvds6 16343 prm23ge5 16745 dec5dvds 16994 dec5nprm 16996 dec2nprm 16997 5prm 17038 10nprm 17043 23prm 17048 prmlem2 17049 43prm 17051 83prm 17052 317prm 17055 prmo5 17058 scandx 17236 scaid 17237 lmodstr 17247 ipsstr 17258 ccondx 17335 ccoid 17336 slotsbhcdif 17337 slotsdifplendx2 17338 slotsdifocndx 17339 prdsvalstr 17374 catstr 17885 lt6abl 19792 psrvalstr 21841 log2ublem1 26872 log2ublem2 26873 log2ub 26875 birthday 26880 ppiublem1 27129 ppiublem2 27130 ppiub 27131 bclbnd 27207 bposlem3 27213 bposlem4 27214 bposlem5 27215 bposlem6 27216 bposlem8 27218 bposlem9 27219 lgsdir2lem3 27254 ex-eprel 30395 ex-xp 30398 fib6 34376 hgt750lem2 34622 hgt750leme 34628 12gcd5e1 41979 12lcm5e60 41984 lcm5un 41993 lcmineqlem 42028 3lexlogpow5ineq1 42030 3lexlogpow2ineq1 42034 3lexlogpow2ineq2 42035 3lexlogpow5ineq5 42036 aks4d1p1p6 42049 aks4d1p1 42052 5ne0 42236 rmydioph 42990 expdiophlem2 42998 algstr 43149 inductionexd 44131 plusmod5ne 47333 minusmod5ne 47337 minusmodnep2tmod 47341 8mod5e3 47348 257prm 47549 fmtno4prmfac193 47561 31prm 47585 41prothprm 47607 gbowge7 47751 gbege6 47753 stgoldbwt 47764 sbgoldbwt 47765 sbgoldbm 47772 sbgoldbo 47775 nnsum3primesle9 47782 gpg5order 48048 gpg5nbgrvtx13starlem1 48059 gpg5nbgrvtx13starlem2 48060 gpg5nbgrvtx13starlem3 48061 gpg5nbgr3star 48069 gpg5grlim 48081 pgnioedg1 48096 pgnioedg2 48097 pgnioedg3 48098 pgnioedg4 48099 pgnbgreunbgrlem1 48101 pgnbgreunbgrlem2lem1 48102 pgnbgreunbgrlem2lem2 48103 pgnbgreunbgrlem2lem3 48104 pgnbgreunbgrlem4 48107 gpg5edgnedg 48118 grlimedgnedg 48119 |
| Copyright terms: Public domain | W3C validator |