| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5nn | Structured version Visualization version GIF version | ||
| Description: 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 5nn | ⊢ 5 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12186 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 4nn 12203 | . . 3 ⊢ 4 ∈ ℕ | |
| 3 | peano2nn 12132 | . . 3 ⊢ (4 ∈ ℕ → (4 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (4 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2827 | 1 ⊢ 5 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7341 1c1 11002 + caddc 11004 ℕcn 12120 4c4 12177 5c5 12178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 ax-1cn 11059 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 |
| This theorem is referenced by: 6nn 12209 5nn0 12396 5eluz3 12776 5ndvds3 16319 5ndvds6 16320 prm23ge5 16722 dec5dvds 16971 dec5nprm 16973 dec2nprm 16974 5prm 17015 10nprm 17020 23prm 17025 prmlem2 17026 43prm 17028 83prm 17029 317prm 17032 prmo5 17035 scandx 17213 scaid 17214 lmodstr 17224 ipsstr 17235 ccondx 17312 ccoid 17313 slotsbhcdif 17314 slotsdifplendx2 17315 slotsdifocndx 17316 prdsvalstr 17351 catstr 17862 lt6abl 19802 psrvalstr 21848 log2ublem1 26878 log2ublem2 26879 log2ub 26881 birthday 26886 ppiublem1 27135 ppiublem2 27136 ppiub 27137 bclbnd 27213 bposlem3 27219 bposlem4 27220 bposlem5 27221 bposlem6 27222 bposlem8 27224 bposlem9 27225 lgsdir2lem3 27260 ex-eprel 30405 ex-xp 30408 fib6 34411 hgt750lem2 34657 hgt750leme 34663 12gcd5e1 42036 12lcm5e60 42041 lcm5un 42050 lcmineqlem 42085 3lexlogpow5ineq1 42087 3lexlogpow2ineq1 42091 3lexlogpow2ineq2 42092 3lexlogpow5ineq5 42093 aks4d1p1p6 42106 aks4d1p1 42109 5ne0 42293 rmydioph 43047 expdiophlem2 43055 algstr 43206 inductionexd 44188 plusmod5ne 47376 minusmod5ne 47380 minusmodnep2tmod 47384 8mod5e3 47391 257prm 47592 fmtno4prmfac193 47604 31prm 47628 41prothprm 47650 gbowge7 47794 gbege6 47796 stgoldbwt 47807 sbgoldbwt 47808 sbgoldbm 47815 sbgoldbo 47818 nnsum3primesle9 47825 gpg5order 48091 gpg5nbgrvtx13starlem1 48102 gpg5nbgrvtx13starlem2 48103 gpg5nbgrvtx13starlem3 48104 gpg5nbgr3star 48112 gpg5grlim 48124 pgnioedg1 48139 pgnioedg2 48140 pgnioedg3 48141 pgnioedg4 48142 pgnbgreunbgrlem1 48144 pgnbgreunbgrlem2lem1 48145 pgnbgreunbgrlem2lem2 48146 pgnbgreunbgrlem2lem3 48147 pgnbgreunbgrlem4 48150 gpg5edgnedg 48161 grlimedgnedg 48162 |
| Copyright terms: Public domain | W3C validator |