| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5nn | Structured version Visualization version GIF version | ||
| Description: 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 5nn | ⊢ 5 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12252 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 4nn 12269 | . . 3 ⊢ 4 ∈ ℕ | |
| 3 | peano2nn 12198 | . . 3 ⊢ (4 ∈ ℕ → (4 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (4 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 5 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7387 1c1 11069 + caddc 11071 ℕcn 12186 4c4 12243 5c5 12244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-1cn 11126 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 |
| This theorem is referenced by: 6nn 12275 5nn0 12462 5eluz3 12842 5ndvds3 16383 5ndvds6 16384 prm23ge5 16786 dec5dvds 17035 dec5nprm 17037 dec2nprm 17038 5prm 17079 10nprm 17084 23prm 17089 prmlem2 17090 43prm 17092 83prm 17093 317prm 17096 prmo5 17099 scandx 17277 scaid 17278 lmodstr 17288 ipsstr 17299 ccondx 17376 ccoid 17377 slotsbhcdif 17378 slotsdifplendx2 17379 slotsdifocndx 17380 prdsvalstr 17415 catstr 17922 lt6abl 19825 psrvalstr 21825 log2ublem1 26856 log2ublem2 26857 log2ub 26859 birthday 26864 ppiublem1 27113 ppiublem2 27114 ppiub 27115 bclbnd 27191 bposlem3 27197 bposlem4 27198 bposlem5 27199 bposlem6 27200 bposlem8 27202 bposlem9 27203 lgsdir2lem3 27238 ex-eprel 30362 ex-xp 30365 fib6 34397 hgt750lem2 34643 hgt750leme 34649 12gcd5e1 41991 12lcm5e60 41996 lcm5un 42005 lcmineqlem 42040 3lexlogpow5ineq1 42042 3lexlogpow2ineq1 42046 3lexlogpow2ineq2 42047 3lexlogpow5ineq5 42048 aks4d1p1p6 42061 aks4d1p1 42064 5ne0 42248 rmydioph 43003 expdiophlem2 43011 algstr 43162 inductionexd 44144 plusmod5ne 47346 minusmod5ne 47350 minusmodnep2tmod 47354 8mod5e3 47361 257prm 47562 fmtno4prmfac193 47574 31prm 47598 41prothprm 47620 gbowge7 47764 gbege6 47766 stgoldbwt 47777 sbgoldbwt 47778 sbgoldbm 47785 sbgoldbo 47788 nnsum3primesle9 47795 gpg5order 48051 gpg5nbgrvtx13starlem1 48062 gpg5nbgrvtx13starlem2 48063 gpg5nbgrvtx13starlem3 48064 gpg5nbgr3star 48072 pgnioedg1 48098 pgnioedg2 48099 pgnioedg3 48100 pgnioedg4 48101 pgnbgreunbgrlem1 48103 pgnbgreunbgrlem2lem1 48104 pgnbgreunbgrlem2lem2 48105 pgnbgreunbgrlem2lem3 48106 pgnbgreunbgrlem4 48109 |
| Copyright terms: Public domain | W3C validator |