Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 5nn | Structured version Visualization version GIF version |
Description: 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
5nn | ⊢ 5 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 12132 | . 2 ⊢ 5 = (4 + 1) | |
2 | 4nn 12149 | . . 3 ⊢ 4 ∈ ℕ | |
3 | peano2nn 12078 | . . 3 ⊢ (4 ∈ ℕ → (4 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (4 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2833 | 1 ⊢ 5 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 (class class class)co 7329 1c1 10965 + caddc 10967 ℕcn 12066 4c4 12123 5c5 12124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 ax-un 7642 ax-1cn 11022 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-ov 7332 df-om 7773 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 |
This theorem is referenced by: 6nn 12155 5nn0 12346 prm23ge5 16605 dec5dvds 16854 dec5nprm 16856 dec2nprm 16857 5prm 16899 10nprm 16904 23prm 16909 prmlem2 16910 43prm 16912 83prm 16913 317prm 16916 prmo5 16919 scandx 17113 scaid 17114 lmodstr 17124 ipsstr 17135 ccondx 17212 ccoid 17213 slotsbhcdif 17214 slotsbhcdifOLD 17215 slotsdifplendx2 17216 slotsdifocndx 17217 prdsvalstr 17252 oppchomfvalOLD 17513 oppcbasOLD 17518 resccoOLD 17635 catstr 17763 lt6abl 19583 mgpscaOLD 19816 psrvalstr 21217 opsrscaOLD 21359 tngscaOLD 23904 log2ublem1 26194 log2ublem2 26195 log2ub 26197 birthday 26202 ppiublem1 26448 ppiublem2 26449 ppiub 26450 bclbnd 26526 bposlem3 26532 bposlem4 26533 bposlem5 26534 bposlem6 26535 bposlem8 26537 bposlem9 26538 lgsdir2lem3 26573 ex-eprel 28998 ex-xp 29001 fib6 32586 hgt750lem2 32845 hgt750leme 32851 12gcd5e1 40258 12lcm5e60 40263 lcm5un 40272 lcmineqlem 40307 3lexlogpow5ineq1 40309 3lexlogpow2ineq1 40313 3lexlogpow2ineq2 40314 3lexlogpow5ineq5 40315 aks4d1p1p6 40328 aks4d1p1 40331 rmydioph 41087 expdiophlem2 41095 algstr 41253 inductionexd 42075 mnringscadOLD 42151 257prm 45353 fmtno4prmfac193 45365 31prm 45389 41prothprm 45411 gbowge7 45555 gbege6 45557 stgoldbwt 45568 sbgoldbwt 45569 sbgoldbm 45576 sbgoldbo 45579 nnsum3primesle9 45586 prstclevalOLD 46690 prstcocvalOLD 46693 |
Copyright terms: Public domain | W3C validator |