| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5nn | Structured version Visualization version GIF version | ||
| Description: 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 5nn | ⊢ 5 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12259 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 4nn 12276 | . . 3 ⊢ 4 ∈ ℕ | |
| 3 | peano2nn 12205 | . . 3 ⊢ (4 ∈ ℕ → (4 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (4 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2825 | 1 ⊢ 5 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7390 1c1 11076 + caddc 11078 ℕcn 12193 4c4 12250 5c5 12251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-1cn 11133 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 |
| This theorem is referenced by: 6nn 12282 5nn0 12469 5eluz3 12849 5ndvds3 16390 5ndvds6 16391 prm23ge5 16793 dec5dvds 17042 dec5nprm 17044 dec2nprm 17045 5prm 17086 10nprm 17091 23prm 17096 prmlem2 17097 43prm 17099 83prm 17100 317prm 17103 prmo5 17106 scandx 17284 scaid 17285 lmodstr 17295 ipsstr 17306 ccondx 17383 ccoid 17384 slotsbhcdif 17385 slotsdifplendx2 17386 slotsdifocndx 17387 prdsvalstr 17422 catstr 17929 lt6abl 19832 psrvalstr 21832 log2ublem1 26863 log2ublem2 26864 log2ub 26866 birthday 26871 ppiublem1 27120 ppiublem2 27121 ppiub 27122 bclbnd 27198 bposlem3 27204 bposlem4 27205 bposlem5 27206 bposlem6 27207 bposlem8 27209 bposlem9 27210 lgsdir2lem3 27245 ex-eprel 30369 ex-xp 30372 fib6 34404 hgt750lem2 34650 hgt750leme 34656 12gcd5e1 41998 12lcm5e60 42003 lcm5un 42012 lcmineqlem 42047 3lexlogpow5ineq1 42049 3lexlogpow2ineq1 42053 3lexlogpow2ineq2 42054 3lexlogpow5ineq5 42055 aks4d1p1p6 42068 aks4d1p1 42071 5ne0 42255 rmydioph 43010 expdiophlem2 43018 algstr 43169 inductionexd 44151 plusmod5ne 47350 minusmod5ne 47354 minusmodnep2tmod 47358 8mod5e3 47365 257prm 47566 fmtno4prmfac193 47578 31prm 47602 41prothprm 47624 gbowge7 47768 gbege6 47770 stgoldbwt 47781 sbgoldbwt 47782 sbgoldbm 47789 sbgoldbo 47792 nnsum3primesle9 47799 gpg5order 48055 gpg5nbgrvtx13starlem1 48066 gpg5nbgrvtx13starlem2 48067 gpg5nbgrvtx13starlem3 48068 gpg5nbgr3star 48076 pgnioedg1 48102 pgnioedg2 48103 pgnioedg3 48104 pgnioedg4 48105 pgnbgreunbgrlem1 48107 pgnbgreunbgrlem2lem1 48108 pgnbgreunbgrlem2lem2 48109 pgnbgreunbgrlem2lem3 48110 pgnbgreunbgrlem4 48113 |
| Copyright terms: Public domain | W3C validator |