Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 5nn | Structured version Visualization version GIF version |
Description: 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
5nn | ⊢ 5 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 11969 | . 2 ⊢ 5 = (4 + 1) | |
2 | 4nn 11986 | . . 3 ⊢ 4 ∈ ℕ | |
3 | peano2nn 11915 | . . 3 ⊢ (4 ∈ ℕ → (4 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (4 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 5 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7255 1c1 10803 + caddc 10805 ℕcn 11903 4c4 11960 5c5 11961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-1cn 10860 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 |
This theorem is referenced by: 6nn 11992 5nn0 12183 prm23ge5 16444 dec5dvds 16693 dec5nprm 16695 dec2nprm 16696 5prm 16738 10nprm 16743 23prm 16748 prmlem2 16749 43prm 16751 83prm 16752 317prm 16755 prmo5 16758 scandx 16950 scaid 16951 lmodstr 16961 ipsstr 16971 ccondx 17042 ccoid 17043 slotsbhcdif 17044 slotsbhcdifOLD 17045 prdsvalstr 17080 oppchomfvalOLD 17341 oppcbasOLD 17346 resccoOLD 17463 catstr 17590 lt6abl 19411 mgpscaOLD 19644 psrvalstr 21029 opsrscaOLD 21171 tngscaOLD 23712 log2ublem1 26001 log2ublem2 26002 log2ub 26004 birthday 26009 ppiublem1 26255 ppiublem2 26256 ppiub 26257 bclbnd 26333 bposlem3 26339 bposlem4 26340 bposlem5 26341 bposlem6 26342 bposlem8 26344 bposlem9 26345 lgsdir2lem3 26380 ex-eprel 28698 ex-xp 28701 fib6 32273 hgt750lem2 32532 hgt750leme 32538 12gcd5e1 39939 12lcm5e60 39944 lcm5un 39953 lcmineqlem 39988 3lexlogpow5ineq1 39990 3lexlogpow2ineq1 39994 3lexlogpow2ineq2 39995 3lexlogpow5ineq5 39996 aks4d1p1p6 40009 aks4d1p1 40012 rmydioph 40752 expdiophlem2 40760 algstr 40918 inductionexd 41654 mnringscadOLD 41730 257prm 44901 fmtno4prmfac193 44913 31prm 44937 41prothprm 44959 gbowge7 45103 gbege6 45105 stgoldbwt 45116 sbgoldbwt 45117 sbgoldbm 45124 sbgoldbo 45127 nnsum3primesle9 45134 prstcleval 46237 prstcocval 46239 |
Copyright terms: Public domain | W3C validator |