Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 5nn | Structured version Visualization version GIF version |
Description: 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
5nn | ⊢ 5 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 12039 | . 2 ⊢ 5 = (4 + 1) | |
2 | 4nn 12056 | . . 3 ⊢ 4 ∈ ℕ | |
3 | peano2nn 11985 | . . 3 ⊢ (4 ∈ ℕ → (4 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (4 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 5 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7275 1c1 10872 + caddc 10874 ℕcn 11973 4c4 12030 5c5 12031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-1cn 10929 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 |
This theorem is referenced by: 6nn 12062 5nn0 12253 prm23ge5 16516 dec5dvds 16765 dec5nprm 16767 dec2nprm 16768 5prm 16810 10nprm 16815 23prm 16820 prmlem2 16821 43prm 16823 83prm 16824 317prm 16827 prmo5 16830 scandx 17024 scaid 17025 lmodstr 17035 ipsstr 17046 ccondx 17123 ccoid 17124 slotsbhcdif 17125 slotsbhcdifOLD 17126 slotsdifplendx2 17127 slotsdifocndx 17128 prdsvalstr 17163 oppchomfvalOLD 17424 oppcbasOLD 17429 resccoOLD 17546 catstr 17674 lt6abl 19496 mgpscaOLD 19729 psrvalstr 21119 opsrscaOLD 21261 tngscaOLD 23806 log2ublem1 26096 log2ublem2 26097 log2ub 26099 birthday 26104 ppiublem1 26350 ppiublem2 26351 ppiub 26352 bclbnd 26428 bposlem3 26434 bposlem4 26435 bposlem5 26436 bposlem6 26437 bposlem8 26439 bposlem9 26440 lgsdir2lem3 26475 ex-eprel 28797 ex-xp 28800 fib6 32373 hgt750lem2 32632 hgt750leme 32638 12gcd5e1 40011 12lcm5e60 40016 lcm5un 40025 lcmineqlem 40060 3lexlogpow5ineq1 40062 3lexlogpow2ineq1 40066 3lexlogpow2ineq2 40067 3lexlogpow5ineq5 40068 aks4d1p1p6 40081 aks4d1p1 40084 rmydioph 40836 expdiophlem2 40844 algstr 41002 inductionexd 41765 mnringscadOLD 41841 257prm 45013 fmtno4prmfac193 45025 31prm 45049 41prothprm 45071 gbowge7 45215 gbege6 45217 stgoldbwt 45228 sbgoldbwt 45229 sbgoldbm 45236 sbgoldbo 45239 nnsum3primesle9 45246 prstclevalOLD 46350 prstcocvalOLD 46353 |
Copyright terms: Public domain | W3C validator |