![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 5nn | Structured version Visualization version GIF version |
Description: 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
5nn | ⊢ 5 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 12359 | . 2 ⊢ 5 = (4 + 1) | |
2 | 4nn 12376 | . . 3 ⊢ 4 ∈ ℕ | |
3 | peano2nn 12305 | . . 3 ⊢ (4 ∈ ℕ → (4 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (4 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2840 | 1 ⊢ 5 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7448 1c1 11185 + caddc 11187 ℕcn 12293 4c4 12350 5c5 12351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-1cn 11242 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 |
This theorem is referenced by: 6nn 12382 5nn0 12573 prm23ge5 16862 dec5dvds 17111 dec5nprm 17113 dec2nprm 17114 5prm 17156 10nprm 17161 23prm 17166 prmlem2 17167 43prm 17169 83prm 17170 317prm 17173 prmo5 17176 scandx 17373 scaid 17374 lmodstr 17384 ipsstr 17395 ccondx 17472 ccoid 17473 slotsbhcdif 17474 slotsbhcdifOLD 17475 slotsdifplendx2 17476 slotsdifocndx 17477 prdsvalstr 17512 oppchomfvalOLD 17773 oppcbasOLD 17778 resccoOLD 17895 catstr 18026 lt6abl 19937 mgpscaOLD 20170 psrvalstr 21959 opsrscaOLD 22101 tngscaOLD 24684 log2ublem1 27007 log2ublem2 27008 log2ub 27010 birthday 27015 ppiublem1 27264 ppiublem2 27265 ppiub 27266 bclbnd 27342 bposlem3 27348 bposlem4 27349 bposlem5 27350 bposlem6 27351 bposlem8 27353 bposlem9 27354 lgsdir2lem3 27389 ex-eprel 30465 ex-xp 30468 fib6 34371 hgt750lem2 34629 hgt750leme 34635 12gcd5e1 41960 12lcm5e60 41965 lcm5un 41974 lcmineqlem 42009 3lexlogpow5ineq1 42011 3lexlogpow2ineq1 42015 3lexlogpow2ineq2 42016 3lexlogpow5ineq5 42017 aks4d1p1p6 42030 aks4d1p1 42033 rmydioph 42971 expdiophlem2 42979 algstr 43134 inductionexd 44117 mnringscadOLD 44192 257prm 47435 fmtno4prmfac193 47447 31prm 47471 41prothprm 47493 gbowge7 47637 gbege6 47639 stgoldbwt 47650 sbgoldbwt 47651 sbgoldbm 47658 sbgoldbo 47661 nnsum3primesle9 47668 prstclevalOLD 48736 prstcocvalOLD 48739 |
Copyright terms: Public domain | W3C validator |