| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5nn | Structured version Visualization version GIF version | ||
| Description: 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 5nn | ⊢ 5 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12228 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 4nn 12245 | . . 3 ⊢ 4 ∈ ℕ | |
| 3 | peano2nn 12174 | . . 3 ⊢ (4 ∈ ℕ → (4 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (4 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 5 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7369 1c1 11045 + caddc 11047 ℕcn 12162 4c4 12219 5c5 12220 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-1cn 11102 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 |
| This theorem is referenced by: 6nn 12251 5nn0 12438 5eluz3 12818 5ndvds3 16359 5ndvds6 16360 prm23ge5 16762 dec5dvds 17011 dec5nprm 17013 dec2nprm 17014 5prm 17055 10nprm 17060 23prm 17065 prmlem2 17066 43prm 17068 83prm 17069 317prm 17072 prmo5 17075 scandx 17253 scaid 17254 lmodstr 17264 ipsstr 17275 ccondx 17352 ccoid 17353 slotsbhcdif 17354 slotsdifplendx2 17355 slotsdifocndx 17356 prdsvalstr 17391 catstr 17898 lt6abl 19801 psrvalstr 21801 log2ublem1 26832 log2ublem2 26833 log2ub 26835 birthday 26840 ppiublem1 27089 ppiublem2 27090 ppiub 27091 bclbnd 27167 bposlem3 27173 bposlem4 27174 bposlem5 27175 bposlem6 27176 bposlem8 27178 bposlem9 27179 lgsdir2lem3 27214 ex-eprel 30335 ex-xp 30338 fib6 34370 hgt750lem2 34616 hgt750leme 34622 12gcd5e1 41964 12lcm5e60 41969 lcm5un 41978 lcmineqlem 42013 3lexlogpow5ineq1 42015 3lexlogpow2ineq1 42019 3lexlogpow2ineq2 42020 3lexlogpow5ineq5 42021 aks4d1p1p6 42034 aks4d1p1 42037 5ne0 42221 rmydioph 42976 expdiophlem2 42984 algstr 43135 inductionexd 44117 plusmod5ne 47319 minusmod5ne 47323 minusmodnep2tmod 47327 8mod5e3 47334 257prm 47535 fmtno4prmfac193 47547 31prm 47571 41prothprm 47593 gbowge7 47737 gbege6 47739 stgoldbwt 47750 sbgoldbwt 47751 sbgoldbm 47758 sbgoldbo 47761 nnsum3primesle9 47768 gpg5order 48024 gpg5nbgrvtx13starlem1 48035 gpg5nbgrvtx13starlem2 48036 gpg5nbgrvtx13starlem3 48037 gpg5nbgr3star 48045 pgnioedg1 48071 pgnioedg2 48072 pgnioedg3 48073 pgnioedg4 48074 pgnbgreunbgrlem1 48076 pgnbgreunbgrlem2lem1 48077 pgnbgreunbgrlem2lem2 48078 pgnbgreunbgrlem2lem3 48079 pgnbgreunbgrlem4 48082 |
| Copyright terms: Public domain | W3C validator |