![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 5nn | Structured version Visualization version GIF version |
Description: 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
5nn | ⊢ 5 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 12329 | . 2 ⊢ 5 = (4 + 1) | |
2 | 4nn 12346 | . . 3 ⊢ 4 ∈ ℕ | |
3 | peano2nn 12275 | . . 3 ⊢ (4 ∈ ℕ → (4 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (4 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2834 | 1 ⊢ 5 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 (class class class)co 7430 1c1 11153 + caddc 11155 ℕcn 12263 4c4 12320 5c5 12321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 ax-1cn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 |
This theorem is referenced by: 6nn 12352 5nn0 12543 5eluz3 12924 5ndvds3 16446 5ndvds6 16447 prm23ge5 16848 dec5dvds 17097 dec5nprm 17099 dec2nprm 17100 5prm 17142 10nprm 17147 23prm 17152 prmlem2 17153 43prm 17155 83prm 17156 317prm 17159 prmo5 17162 scandx 17359 scaid 17360 lmodstr 17370 ipsstr 17381 ccondx 17458 ccoid 17459 slotsbhcdif 17460 slotsbhcdifOLD 17461 slotsdifplendx2 17462 slotsdifocndx 17463 prdsvalstr 17498 oppchomfvalOLD 17759 oppcbasOLD 17764 resccoOLD 17881 catstr 18012 lt6abl 19927 mgpscaOLD 20160 psrvalstr 21953 opsrscaOLD 22095 tngscaOLD 24678 log2ublem1 27003 log2ublem2 27004 log2ub 27006 birthday 27011 ppiublem1 27260 ppiublem2 27261 ppiub 27262 bclbnd 27338 bposlem3 27344 bposlem4 27345 bposlem5 27346 bposlem6 27347 bposlem8 27349 bposlem9 27350 lgsdir2lem3 27385 ex-eprel 30461 ex-xp 30464 fib6 34387 hgt750lem2 34645 hgt750leme 34651 12gcd5e1 41984 12lcm5e60 41989 lcm5un 41998 lcmineqlem 42033 3lexlogpow5ineq1 42035 3lexlogpow2ineq1 42039 3lexlogpow2ineq2 42040 3lexlogpow5ineq5 42041 aks4d1p1p6 42054 aks4d1p1 42057 rmydioph 43002 expdiophlem2 43010 algstr 43161 inductionexd 44144 mnringscadOLD 44218 plusmod5ne 47284 minusmod5ne 47288 minusmodnep2tmod 47292 257prm 47485 fmtno4prmfac193 47497 31prm 47521 41prothprm 47543 gbowge7 47687 gbege6 47689 stgoldbwt 47700 sbgoldbwt 47701 sbgoldbm 47708 sbgoldbo 47711 nnsum3primesle9 47718 gpg5order 47948 gpg5nbgrvtx13starlem1 47961 gpg5nbgrvtx13starlem2 47962 gpg5nbgrvtx13starlem3 47963 gpg5nbgr3star 47971 prstclevalOLD 48869 prstcocvalOLD 48872 |
Copyright terms: Public domain | W3C validator |