| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5re | Structured version Visualization version GIF version | ||
| Description: The number 5 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 5re | ⊢ 5 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12259 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 4re 12277 | . . 3 ⊢ 4 ∈ ℝ | |
| 3 | 1re 11181 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11196 | . 2 ⊢ (4 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2825 | 1 ⊢ 5 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7390 ℝcr 11074 1c1 11076 + caddc 11078 4c4 12250 5c5 12251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-i2m1 11143 ax-1ne0 11144 ax-rrecex 11147 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-2 12256 df-3 12257 df-4 12258 df-5 12259 |
| This theorem is referenced by: 6re 12283 6pos 12303 3lt5 12366 2lt5 12367 1lt5 12368 5lt6 12369 4lt6 12370 5lt7 12375 4lt7 12376 5lt8 12382 4lt8 12383 5lt9 12390 4lt9 12391 5lt10 12791 4lt10 12792 5recm6rec 12799 5eluz3 12849 5rp 12965 fz0to5un2tp 13599 ef01bndlem 16159 prm23ge5 16793 prmlem1 17085 vscandxnscandx 17294 slotsdifipndx 17305 slotstnscsi 17330 plendxnscandx 17343 slotsdnscsi 17362 ppiublem1 27120 ppiub 27122 bposlem3 27204 bposlem4 27205 bposlem5 27206 bposlem6 27207 bposlem8 27209 bposlem9 27210 lgsdir2lem1 27243 gausslemma2dlem4 27287 2lgslem3 27322 ex-id 30370 ex-sqrt 30390 threehalves 32842 cyc3conja 33121 hgt750lem2 34650 hgt750leme 34656 problem2 35660 12gcd5e1 41998 lcmineqlem23 42046 3lexlogpow2ineq1 42053 3lexlogpow2ineq2 42054 aks4d1p1p4 42066 aks4d1p1p6 42068 aks4d1p1p7 42069 aks4d1p1p5 42070 stoweidlem13 46018 ceil5half3 47345 modm2nep1 47371 modp2nep1 47372 modm1nep2 47373 modm1nem2 47374 modm1p1ne 47375 31prm 47602 gbegt5 47766 gbowgt5 47767 sbgoldbo 47792 nnsum3primesle9 47799 nnsum4primesodd 47801 evengpop3 47803 usgrexmpl1lem 48016 usgrexmpl2lem 48021 usgrexmpl2nb4 48030 usgrexmpl2nb5 48031 gpg5nbgrvtx13starlem2 48067 gpg5nbgr3star 48076 |
| Copyright terms: Public domain | W3C validator |