![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 5re | Structured version Visualization version GIF version |
Description: The number 5 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
5re | ⊢ 5 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 12329 | . 2 ⊢ 5 = (4 + 1) | |
2 | 4re 12347 | . . 3 ⊢ 4 ∈ ℝ | |
3 | 1re 11258 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 11273 | . 2 ⊢ (4 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2834 | 1 ⊢ 5 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 (class class class)co 7430 ℝcr 11151 1c1 11153 + caddc 11155 4c4 12320 5c5 12321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-i2m1 11220 ax-1ne0 11221 ax-rrecex 11224 ax-cnre 11225 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 df-2 12326 df-3 12327 df-4 12328 df-5 12329 |
This theorem is referenced by: 6re 12353 6pos 12373 3lt5 12441 2lt5 12442 1lt5 12443 5lt6 12444 4lt6 12445 5lt7 12450 4lt7 12451 5lt8 12457 4lt8 12458 5lt9 12465 4lt9 12466 5lt10 12865 4lt10 12866 5recm6rec 12874 5eluz3 12924 5rp 13038 fz0to5un2tp 13667 ef01bndlem 16216 prm23ge5 16848 prmlem1 17141 vscandxnscandx 17369 slotsdifipndx 17380 slotstnscsi 17405 plendxnscandx 17418 slotsdnscsi 17437 rmodislmodOLD 20945 sralemOLD 21193 srascaOLD 21201 zlmlemOLD 21545 ppiublem1 27260 ppiub 27262 bposlem3 27344 bposlem4 27345 bposlem5 27346 bposlem6 27347 bposlem8 27349 bposlem9 27350 lgsdir2lem1 27383 gausslemma2dlem4 27427 2lgslem3 27462 cchhllemOLD 28916 ex-id 30462 ex-sqrt 30482 threehalves 32881 cyc3conja 33159 resvvscaOLD 33343 zlmdsOLD 33923 zlmtsetOLD 33925 hgt750lem2 34645 hgt750leme 34651 problem2 35650 12gcd5e1 41984 lcmineqlem23 42032 3lexlogpow2ineq1 42039 3lexlogpow2ineq2 42040 aks4d1p1p4 42052 aks4d1p1p6 42054 aks4d1p1p7 42055 aks4d1p1p5 42056 stoweidlem13 45968 ceil5half3 47279 31prm 47521 gbegt5 47685 gbowgt5 47686 sbgoldbo 47711 nnsum3primesle9 47718 nnsum4primesodd 47720 evengpop3 47722 usgrexmpl1lem 47915 usgrexmpl2lem 47920 usgrexmpl2nb4 47929 usgrexmpl2nb5 47930 gpg5nbgrvtx13starlem2 47962 gpg5nbgr3star 47971 |
Copyright terms: Public domain | W3C validator |