| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5re | Structured version Visualization version GIF version | ||
| Description: The number 5 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 5re | ⊢ 5 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12194 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 4re 12212 | . . 3 ⊢ 4 ∈ ℝ | |
| 3 | 1re 11115 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11130 | . 2 ⊢ (4 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 5 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7349 ℝcr 11008 1c1 11010 + caddc 11012 4c4 12185 5c5 12186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-i2m1 11077 ax-1ne0 11078 ax-rrecex 11081 ax-cnre 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-2 12191 df-3 12192 df-4 12193 df-5 12194 |
| This theorem is referenced by: 6re 12218 6pos 12238 3lt5 12301 2lt5 12302 1lt5 12303 5lt6 12304 4lt6 12305 5lt7 12310 4lt7 12311 5lt8 12317 4lt8 12318 5lt9 12325 4lt9 12326 5lt10 12726 4lt10 12727 5recm6rec 12734 5eluz3 12784 5rp 12900 fz0to5un2tp 13534 ef01bndlem 16093 prm23ge5 16727 prmlem1 17019 vscandxnscandx 17228 slotsdifipndx 17239 slotstnscsi 17264 plendxnscandx 17277 slotsdnscsi 17296 ppiublem1 27111 ppiub 27113 bposlem3 27195 bposlem4 27196 bposlem5 27197 bposlem6 27198 bposlem8 27200 bposlem9 27201 lgsdir2lem1 27234 gausslemma2dlem4 27278 2lgslem3 27313 ex-id 30378 ex-sqrt 30398 threehalves 32855 cyc3conja 33099 hgt750lem2 34620 hgt750leme 34626 problem2 35643 12gcd5e1 41980 lcmineqlem23 42028 3lexlogpow2ineq1 42035 3lexlogpow2ineq2 42036 aks4d1p1p4 42048 aks4d1p1p6 42050 aks4d1p1p7 42051 aks4d1p1p5 42052 stoweidlem13 45998 ceil5half3 47328 modm2nep1 47354 modp2nep1 47355 modm1nep2 47356 modm1nem2 47357 modm1p1ne 47358 31prm 47585 gbegt5 47749 gbowgt5 47750 sbgoldbo 47775 nnsum3primesle9 47782 nnsum4primesodd 47784 evengpop3 47786 usgrexmpl1lem 48009 usgrexmpl2lem 48014 usgrexmpl2nb4 48023 usgrexmpl2nb5 48024 gpg5nbgrvtx13starlem2 48060 gpg5nbgr3star 48069 gpg5edgnedg 48118 |
| Copyright terms: Public domain | W3C validator |