Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 5re | Structured version Visualization version GIF version |
Description: The number 5 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
5re | ⊢ 5 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 11969 | . 2 ⊢ 5 = (4 + 1) | |
2 | 4re 11987 | . . 3 ⊢ 4 ∈ ℝ | |
3 | 1re 10906 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 10921 | . 2 ⊢ (4 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 5 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7255 ℝcr 10801 1c1 10803 + caddc 10805 4c4 11960 5c5 11961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-i2m1 10870 ax-1ne0 10871 ax-rrecex 10874 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-2 11966 df-3 11967 df-4 11968 df-5 11969 |
This theorem is referenced by: 6re 11993 6pos 12013 3lt5 12081 2lt5 12082 1lt5 12083 5lt6 12084 4lt6 12085 5lt7 12090 4lt7 12091 5lt8 12097 4lt8 12098 5lt9 12105 4lt9 12106 5lt10 12501 4lt10 12502 5recm6rec 12510 ef01bndlem 15821 prm23ge5 16444 prmlem1 16737 vscandxnscandx 16960 slotstnscsi 16994 plendxnscandx 17007 slotsdnscsi 17023 rmodislmodOLD 20107 sralemOLD 20355 srasca 20362 zlmlemOLD 20631 ppiublem1 26255 ppiub 26257 bposlem3 26339 bposlem4 26340 bposlem5 26341 bposlem6 26342 bposlem8 26344 bposlem9 26345 lgsdir2lem1 26378 gausslemma2dlem4 26422 2lgslem3 26457 cchhllemOLD 27158 ex-id 28699 ex-sqrt 28719 threehalves 31091 cyc3conja 31326 resvvscaOLD 31439 zlmds 31814 zlmtset 31815 hgt750lem2 32532 hgt750leme 32538 problem2 33524 12gcd5e1 39939 lcmineqlem23 39987 3lexlogpow2ineq1 39994 3lexlogpow2ineq2 39995 aks4d1p1p4 40007 aks4d1p1p6 40009 aks4d1p1p7 40010 aks4d1p1p5 40011 stoweidlem13 43444 31prm 44937 gbegt5 45101 gbowgt5 45102 sbgoldbo 45127 nnsum3primesle9 45134 nnsum4primesodd 45136 evengpop3 45138 |
Copyright terms: Public domain | W3C validator |