| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5re | Structured version Visualization version GIF version | ||
| Description: The number 5 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 5re | ⊢ 5 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12252 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 4re 12270 | . . 3 ⊢ 4 ∈ ℝ | |
| 3 | 1re 11174 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11189 | . 2 ⊢ (4 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 5 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7387 ℝcr 11067 1c1 11069 + caddc 11071 4c4 12243 5c5 12244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-i2m1 11136 ax-1ne0 11137 ax-rrecex 11140 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-2 12249 df-3 12250 df-4 12251 df-5 12252 |
| This theorem is referenced by: 6re 12276 6pos 12296 3lt5 12359 2lt5 12360 1lt5 12361 5lt6 12362 4lt6 12363 5lt7 12368 4lt7 12369 5lt8 12375 4lt8 12376 5lt9 12383 4lt9 12384 5lt10 12784 4lt10 12785 5recm6rec 12792 5eluz3 12842 5rp 12958 fz0to5un2tp 13592 ef01bndlem 16152 prm23ge5 16786 prmlem1 17078 vscandxnscandx 17287 slotsdifipndx 17298 slotstnscsi 17323 plendxnscandx 17336 slotsdnscsi 17355 ppiublem1 27113 ppiub 27115 bposlem3 27197 bposlem4 27198 bposlem5 27199 bposlem6 27200 bposlem8 27202 bposlem9 27203 lgsdir2lem1 27236 gausslemma2dlem4 27280 2lgslem3 27315 ex-id 30363 ex-sqrt 30383 threehalves 32835 cyc3conja 33114 hgt750lem2 34643 hgt750leme 34649 problem2 35653 12gcd5e1 41991 lcmineqlem23 42039 3lexlogpow2ineq1 42046 3lexlogpow2ineq2 42047 aks4d1p1p4 42059 aks4d1p1p6 42061 aks4d1p1p7 42062 aks4d1p1p5 42063 stoweidlem13 46011 ceil5half3 47341 modm2nep1 47367 modp2nep1 47368 modm1nep2 47369 modm1nem2 47370 modm1p1ne 47371 31prm 47598 gbegt5 47762 gbowgt5 47763 sbgoldbo 47788 nnsum3primesle9 47795 nnsum4primesodd 47797 evengpop3 47799 usgrexmpl1lem 48012 usgrexmpl2lem 48017 usgrexmpl2nb4 48026 usgrexmpl2nb5 48027 gpg5nbgrvtx13starlem2 48063 gpg5nbgr3star 48072 |
| Copyright terms: Public domain | W3C validator |