| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5re | Structured version Visualization version GIF version | ||
| Description: The number 5 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 5re | ⊢ 5 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12228 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 4re 12246 | . . 3 ⊢ 4 ∈ ℝ | |
| 3 | 1re 11150 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11165 | . 2 ⊢ (4 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 5 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7369 ℝcr 11043 1c1 11045 + caddc 11047 4c4 12219 5c5 12220 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-i2m1 11112 ax-1ne0 11113 ax-rrecex 11116 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-2 12225 df-3 12226 df-4 12227 df-5 12228 |
| This theorem is referenced by: 6re 12252 6pos 12272 3lt5 12335 2lt5 12336 1lt5 12337 5lt6 12338 4lt6 12339 5lt7 12344 4lt7 12345 5lt8 12351 4lt8 12352 5lt9 12359 4lt9 12360 5lt10 12760 4lt10 12761 5recm6rec 12768 5eluz3 12818 5rp 12934 fz0to5un2tp 13568 ef01bndlem 16128 prm23ge5 16762 prmlem1 17054 vscandxnscandx 17263 slotsdifipndx 17274 slotstnscsi 17299 plendxnscandx 17312 slotsdnscsi 17331 ppiublem1 27146 ppiub 27148 bposlem3 27230 bposlem4 27231 bposlem5 27232 bposlem6 27233 bposlem8 27235 bposlem9 27236 lgsdir2lem1 27269 gausslemma2dlem4 27313 2lgslem3 27348 ex-id 30413 ex-sqrt 30433 threehalves 32885 cyc3conja 33129 hgt750lem2 34636 hgt750leme 34642 problem2 35646 12gcd5e1 41984 lcmineqlem23 42032 3lexlogpow2ineq1 42039 3lexlogpow2ineq2 42040 aks4d1p1p4 42052 aks4d1p1p6 42054 aks4d1p1p7 42055 aks4d1p1p5 42056 stoweidlem13 46004 ceil5half3 47334 modm2nep1 47360 modp2nep1 47361 modm1nep2 47362 modm1nem2 47363 modm1p1ne 47364 31prm 47591 gbegt5 47755 gbowgt5 47756 sbgoldbo 47781 nnsum3primesle9 47788 nnsum4primesodd 47790 evengpop3 47792 usgrexmpl1lem 48005 usgrexmpl2lem 48010 usgrexmpl2nb4 48019 usgrexmpl2nb5 48020 gpg5nbgrvtx13starlem2 48056 gpg5nbgr3star 48065 |
| Copyright terms: Public domain | W3C validator |