| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5re | Structured version Visualization version GIF version | ||
| Description: The number 5 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 5re | ⊢ 5 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12306 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 4re 12324 | . . 3 ⊢ 4 ∈ ℝ | |
| 3 | 1re 11235 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11250 | . 2 ⊢ (4 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2830 | 1 ⊢ 5 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 (class class class)co 7405 ℝcr 11128 1c1 11130 + caddc 11132 4c4 12297 5c5 12298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-i2m1 11197 ax-1ne0 11198 ax-rrecex 11201 ax-cnre 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-2 12303 df-3 12304 df-4 12305 df-5 12306 |
| This theorem is referenced by: 6re 12330 6pos 12350 3lt5 12418 2lt5 12419 1lt5 12420 5lt6 12421 4lt6 12422 5lt7 12427 4lt7 12428 5lt8 12434 4lt8 12435 5lt9 12442 4lt9 12443 5lt10 12843 4lt10 12844 5recm6rec 12851 5eluz3 12901 5rp 13015 fz0to5un2tp 13648 ef01bndlem 16202 prm23ge5 16835 prmlem1 17127 vscandxnscandx 17338 slotsdifipndx 17349 slotstnscsi 17374 plendxnscandx 17387 slotsdnscsi 17406 ppiublem1 27165 ppiub 27167 bposlem3 27249 bposlem4 27250 bposlem5 27251 bposlem6 27252 bposlem8 27254 bposlem9 27255 lgsdir2lem1 27288 gausslemma2dlem4 27332 2lgslem3 27367 ex-id 30415 ex-sqrt 30435 threehalves 32889 cyc3conja 33168 hgt750lem2 34684 hgt750leme 34690 problem2 35688 12gcd5e1 42016 lcmineqlem23 42064 3lexlogpow2ineq1 42071 3lexlogpow2ineq2 42072 aks4d1p1p4 42084 aks4d1p1p6 42086 aks4d1p1p7 42087 aks4d1p1p5 42088 stoweidlem13 46042 ceil5half3 47369 31prm 47611 gbegt5 47775 gbowgt5 47776 sbgoldbo 47801 nnsum3primesle9 47808 nnsum4primesodd 47810 evengpop3 47812 usgrexmpl1lem 48025 usgrexmpl2lem 48030 usgrexmpl2nb4 48039 usgrexmpl2nb5 48040 gpg5nbgrvtx13starlem2 48074 gpg5nbgr3star 48083 |
| Copyright terms: Public domain | W3C validator |