| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5re | Structured version Visualization version GIF version | ||
| Description: The number 5 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 5re | ⊢ 5 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12191 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 4re 12209 | . . 3 ⊢ 4 ∈ ℝ | |
| 3 | 1re 11112 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11127 | . 2 ⊢ (4 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2827 | 1 ⊢ 5 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7346 ℝcr 11005 1c1 11007 + caddc 11009 4c4 12182 5c5 12183 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-i2m1 11074 ax-1ne0 11075 ax-rrecex 11078 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-2 12188 df-3 12189 df-4 12190 df-5 12191 |
| This theorem is referenced by: 6re 12215 6pos 12235 3lt5 12298 2lt5 12299 1lt5 12300 5lt6 12301 4lt6 12302 5lt7 12307 4lt7 12308 5lt8 12314 4lt8 12315 5lt9 12322 4lt9 12323 5lt10 12723 4lt10 12724 5recm6rec 12731 5eluz3 12781 5rp 12897 fz0to5un2tp 13531 ef01bndlem 16093 prm23ge5 16727 prmlem1 17019 vscandxnscandx 17228 slotsdifipndx 17239 slotstnscsi 17264 plendxnscandx 17277 slotsdnscsi 17296 ppiublem1 27140 ppiub 27142 bposlem3 27224 bposlem4 27225 bposlem5 27226 bposlem6 27227 bposlem8 27229 bposlem9 27230 lgsdir2lem1 27263 gausslemma2dlem4 27307 2lgslem3 27342 ex-id 30414 ex-sqrt 30434 threehalves 32895 cyc3conja 33126 hgt750lem2 34665 hgt750leme 34671 problem2 35710 12gcd5e1 42106 lcmineqlem23 42154 3lexlogpow2ineq1 42161 3lexlogpow2ineq2 42162 aks4d1p1p4 42174 aks4d1p1p6 42176 aks4d1p1p7 42177 aks4d1p1p5 42178 stoweidlem13 46121 ceil5half3 47450 modm2nep1 47476 modp2nep1 47477 modm1nep2 47478 modm1nem2 47479 modm1p1ne 47480 31prm 47707 gbegt5 47871 gbowgt5 47872 sbgoldbo 47897 nnsum3primesle9 47904 nnsum4primesodd 47906 evengpop3 47908 usgrexmpl1lem 48131 usgrexmpl2lem 48136 usgrexmpl2nb4 48145 usgrexmpl2nb5 48146 gpg5nbgrvtx13starlem2 48182 gpg5nbgr3star 48191 gpg5edgnedg 48240 |
| Copyright terms: Public domain | W3C validator |