Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 5re | Structured version Visualization version GIF version |
Description: The number 5 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
5re | ⊢ 5 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 12039 | . 2 ⊢ 5 = (4 + 1) | |
2 | 4re 12057 | . . 3 ⊢ 4 ∈ ℝ | |
3 | 1re 10975 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 10990 | . 2 ⊢ (4 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 5 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7275 ℝcr 10870 1c1 10872 + caddc 10874 4c4 12030 5c5 12031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-i2m1 10939 ax-1ne0 10940 ax-rrecex 10943 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-2 12036 df-3 12037 df-4 12038 df-5 12039 |
This theorem is referenced by: 6re 12063 6pos 12083 3lt5 12151 2lt5 12152 1lt5 12153 5lt6 12154 4lt6 12155 5lt7 12160 4lt7 12161 5lt8 12167 4lt8 12168 5lt9 12175 4lt9 12176 5lt10 12572 4lt10 12573 5recm6rec 12581 ef01bndlem 15893 prm23ge5 16516 prmlem1 16809 vscandxnscandx 17034 slotsdifipndx 17045 slotstnscsi 17070 plendxnscandx 17083 slotsdnscsi 17102 rmodislmodOLD 20192 sralemOLD 20440 srascaOLD 20448 zlmlemOLD 20719 ppiublem1 26350 ppiub 26352 bposlem3 26434 bposlem4 26435 bposlem5 26436 bposlem6 26437 bposlem8 26439 bposlem9 26440 lgsdir2lem1 26473 gausslemma2dlem4 26517 2lgslem3 26552 cchhllemOLD 27255 ex-id 28798 ex-sqrt 28818 threehalves 31189 cyc3conja 31424 resvvscaOLD 31537 zlmdsOLD 31913 zlmtsetOLD 31915 hgt750lem2 32632 hgt750leme 32638 problem2 33624 12gcd5e1 40011 lcmineqlem23 40059 3lexlogpow2ineq1 40066 3lexlogpow2ineq2 40067 aks4d1p1p4 40079 aks4d1p1p6 40081 aks4d1p1p7 40082 aks4d1p1p5 40083 stoweidlem13 43554 31prm 45049 gbegt5 45213 gbowgt5 45214 sbgoldbo 45239 nnsum3primesle9 45246 nnsum4primesodd 45248 evengpop3 45250 |
Copyright terms: Public domain | W3C validator |