Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 8t5e40 | Structured version Visualization version GIF version |
Description: 8 times 5 equals 40. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
8t5e40 | ⊢ (8 · 5) = ;40 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn0 11958 | . 2 ⊢ 8 ∈ ℕ0 | |
2 | 4nn0 11954 | . 2 ⊢ 4 ∈ ℕ0 | |
3 | df-5 11741 | . 2 ⊢ 5 = (4 + 1) | |
4 | 8t4e32 12255 | . 2 ⊢ (8 · 4) = ;32 | |
5 | 3nn0 11953 | . . 3 ⊢ 3 ∈ ℕ0 | |
6 | 2nn0 11952 | . . 3 ⊢ 2 ∈ ℕ0 | |
7 | eqid 2759 | . . 3 ⊢ ;32 = ;32 | |
8 | 3p1e4 11820 | . . 3 ⊢ (3 + 1) = 4 | |
9 | 8cn 11772 | . . . 4 ⊢ 8 ∈ ℂ | |
10 | 2cn 11750 | . . . 4 ⊢ 2 ∈ ℂ | |
11 | 8p2e10 12218 | . . . 4 ⊢ (8 + 2) = ;10 | |
12 | 9, 10, 11 | addcomli 10871 | . . 3 ⊢ (2 + 8) = ;10 |
13 | 5, 6, 1, 7, 8, 12 | decaddci2 12200 | . 2 ⊢ (;32 + 8) = ;40 |
14 | 1, 2, 3, 4, 13 | 4t3lem 12235 | 1 ⊢ (8 · 5) = ;40 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7151 0cc0 10576 1c1 10577 · cmul 10581 2c2 11730 3c3 11731 4c4 11732 5c5 11733 8c8 11736 ;cdc 12138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10716 df-mnf 10717 df-ltxr 10719 df-sub 10911 df-nn 11676 df-2 11738 df-3 11739 df-4 11740 df-5 11741 df-6 11742 df-7 11743 df-8 11744 df-9 11745 df-n0 11936 df-dec 12139 |
This theorem is referenced by: 8t6e48 12257 2exp11 16482 2503lem2 16530 4001prm 16537 log2ub 25635 hgt750lem2 32152 420gcd8e4 39574 5tcu2e40 44501 |
Copyright terms: Public domain | W3C validator |