MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  8t5e40 Structured version   Visualization version   GIF version

Theorem 8t5e40 12835
Description: 8 times 5 equals 40. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
8t5e40 (8 · 5) = 40

Proof of Theorem 8t5e40
StepHypRef Expression
1 8nn0 12533 . 2 8 ∈ ℕ0
2 4nn0 12529 . 2 4 ∈ ℕ0
3 df-5 12315 . 2 5 = (4 + 1)
4 8t4e32 12834 . 2 (8 · 4) = 32
5 3nn0 12528 . . 3 3 ∈ ℕ0
6 2nn0 12527 . . 3 2 ∈ ℕ0
7 eqid 2734 . . 3 32 = 32
8 3p1e4 12394 . . 3 (3 + 1) = 4
9 8cn 12346 . . . 4 8 ∈ ℂ
10 2cn 12324 . . . 4 2 ∈ ℂ
11 8p2e10 12797 . . . 4 (8 + 2) = 10
129, 10, 11addcomli 11436 . . 3 (2 + 8) = 10
135, 6, 1, 7, 8, 12decaddci2 12779 . 2 (32 + 8) = 40
141, 2, 3, 4, 134t3lem 12814 1 (8 · 5) = 40
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  (class class class)co 7414  0cc0 11138  1c1 11139   · cmul 11143  2c2 12304  3c3 12305  4c4 12306  5c5 12307  8c8 12310  cdc 12717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-ltxr 11283  df-sub 11477  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-6 12316  df-7 12317  df-8 12318  df-9 12319  df-n0 12511  df-dec 12718
This theorem is referenced by:  8t6e48  12836  2exp11  17110  2503lem2  17158  4001prm  17165  log2ub  26947  hgt750lem2  34608  420gcd8e4  41948  5tcu2e40  47548
  Copyright terms: Public domain W3C validator