![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > icof | Structured version Visualization version GIF version |
Description: The set of left-closed right-open intervals of extended reals maps to subsets of extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
icof | ⊢ [,):(ℝ* × ℝ*)⟶𝒫 ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2731 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} = {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
2 | ssrab2 4076 | . . . . 5 ⊢ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ⊆ ℝ* | |
3 | xrex 12975 | . . . . . . 7 ⊢ ℝ* ∈ V | |
4 | 3 | rabex 5331 | . . . . . 6 ⊢ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ V |
5 | 4 | elpw 4605 | . . . . 5 ⊢ ({𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ* ↔ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ⊆ ℝ*) |
6 | 2, 5 | mpbir 230 | . . . 4 ⊢ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ* |
7 | 1, 6 | eqeltrrdi 2840 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ*) |
8 | 7 | rgen2 3195 | . 2 ⊢ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ* |
9 | df-ico 13334 | . . 3 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
10 | 9 | fmpo 8056 | . 2 ⊢ (∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ* ↔ [,):(ℝ* × ℝ*)⟶𝒫 ℝ*) |
11 | 8, 10 | mpbi 229 | 1 ⊢ [,):(ℝ* × ℝ*)⟶𝒫 ℝ* |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 ∈ wcel 2104 ∀wral 3059 {crab 3430 ⊆ wss 3947 𝒫 cpw 4601 class class class wbr 5147 × cxp 5673 ⟶wf 6538 ℝ*cxr 11251 < clt 11252 ≤ cle 11253 [,)cico 13330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-xr 11256 df-ico 13334 |
This theorem is referenced by: fvvolicof 45005 volicoff 45009 voliooicof 45010 ovolval5lem2 45667 ovolval5lem3 45668 ovnovollem1 45670 ovnovollem2 45671 |
Copyright terms: Public domain | W3C validator |