Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icof Structured version   Visualization version   GIF version

Theorem icof 45220
Description: The set of left-closed right-open intervals of extended reals maps to subsets of extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
icof [,):(ℝ* × ℝ*)⟶𝒫 ℝ*

Proof of Theorem icof
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2731 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
2 ssrab2 4046 . . . . 5 {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ⊆ ℝ*
3 xrex 12953 . . . . . . 7 * ∈ V
43rabex 5297 . . . . . 6 {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ V
54elpw 4570 . . . . 5 ({𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ* ↔ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ⊆ ℝ*)
62, 5mpbir 231 . . . 4 {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ*
71, 6eqeltrrdi 2838 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ*)
87rgen2 3178 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ*
9 df-ico 13319 . . 3 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
109fmpo 8050 . 2 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ* ↔ [,):(ℝ* × ℝ*)⟶𝒫 ℝ*)
118, 10mpbi 230 1 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  wral 3045  {crab 3408  wss 3917  𝒫 cpw 4566   class class class wbr 5110   × cxp 5639  wf 6510  *cxr 11214   < clt 11215  cle 11216  [,)cico 13315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-xr 11219  df-ico 13319
This theorem is referenced by:  fvvolicof  45996  volicoff  46000  voliooicof  46001  ovolval5lem2  46658  ovolval5lem3  46659  ovnovollem1  46661  ovnovollem2  46662
  Copyright terms: Public domain W3C validator