Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icof Structured version   Visualization version   GIF version

Theorem icof 42648
Description: The set of left-closed right-open intervals of extended reals maps to subsets of extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
icof [,):(ℝ* × ℝ*)⟶𝒫 ℝ*

Proof of Theorem icof
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2739 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
2 ssrab2 4009 . . . . 5 {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ⊆ ℝ*
3 xrex 12656 . . . . . . 7 * ∈ V
43rabex 5251 . . . . . 6 {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ V
54elpw 4534 . . . . 5 ({𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ* ↔ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ⊆ ℝ*)
62, 5mpbir 230 . . . 4 {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ*
71, 6eqeltrrdi 2848 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ*)
87rgen2 3126 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ*
9 df-ico 13014 . . 3 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
109fmpo 7881 . 2 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ* ↔ [,):(ℝ* × ℝ*)⟶𝒫 ℝ*)
118, 10mpbi 229 1 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2108  wral 3063  {crab 3067  wss 3883  𝒫 cpw 4530   class class class wbr 5070   × cxp 5578  wf 6414  *cxr 10939   < clt 10940  cle 10941  [,)cico 13010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-xr 10944  df-ico 13014
This theorem is referenced by:  fvvolicof  43422  volicoff  43426  voliooicof  43427  ovolval5lem2  44081  ovolval5lem3  44082  ovnovollem1  44084  ovnovollem2  44085
  Copyright terms: Public domain W3C validator