Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > icof | Structured version Visualization version GIF version |
Description: The set of left-closed right-open intervals of extended reals maps to subsets of extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
icof | ⊢ [,):(ℝ* × ℝ*)⟶𝒫 ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2741 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} = {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
2 | ssrab2 4018 | . . . . 5 ⊢ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ⊆ ℝ* | |
3 | xrex 12738 | . . . . . . 7 ⊢ ℝ* ∈ V | |
4 | 3 | rabex 5260 | . . . . . 6 ⊢ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ V |
5 | 4 | elpw 4543 | . . . . 5 ⊢ ({𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ* ↔ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ⊆ ℝ*) |
6 | 2, 5 | mpbir 230 | . . . 4 ⊢ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ* |
7 | 1, 6 | eqeltrrdi 2850 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ*) |
8 | 7 | rgen2 3129 | . 2 ⊢ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ* |
9 | df-ico 13096 | . . 3 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
10 | 9 | fmpo 7902 | . 2 ⊢ (∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ* ↔ [,):(ℝ* × ℝ*)⟶𝒫 ℝ*) |
11 | 8, 10 | mpbi 229 | 1 ⊢ [,):(ℝ* × ℝ*)⟶𝒫 ℝ* |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∈ wcel 2110 ∀wral 3066 {crab 3070 ⊆ wss 3892 𝒫 cpw 4539 class class class wbr 5079 × cxp 5588 ⟶wf 6428 ℝ*cxr 11019 < clt 11020 ≤ cle 11021 [,)cico 13092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7583 ax-cnex 10938 ax-resscn 10939 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fv 6440 df-oprab 7276 df-mpo 7277 df-1st 7825 df-2nd 7826 df-xr 11024 df-ico 13096 |
This theorem is referenced by: fvvolicof 43514 volicoff 43518 voliooicof 43519 ovolval5lem2 44173 ovolval5lem3 44174 ovnovollem1 44176 ovnovollem2 44177 |
Copyright terms: Public domain | W3C validator |