Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icof Structured version   Visualization version   GIF version

Theorem icof 45210
Description: The set of left-closed right-open intervals of extended reals maps to subsets of extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
icof [,):(ℝ* × ℝ*)⟶𝒫 ℝ*

Proof of Theorem icof
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2737 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
2 ssrab2 4060 . . . . 5 {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ⊆ ℝ*
3 xrex 13008 . . . . . . 7 * ∈ V
43rabex 5314 . . . . . 6 {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ V
54elpw 4584 . . . . 5 ({𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ* ↔ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ⊆ ℝ*)
62, 5mpbir 231 . . . 4 {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ*
71, 6eqeltrrdi 2844 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ*)
87rgen2 3185 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ*
9 df-ico 13373 . . 3 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
109fmpo 8072 . 2 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ* ↔ [,):(ℝ* × ℝ*)⟶𝒫 ℝ*)
118, 10mpbi 230 1 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  wral 3052  {crab 3420  wss 3931  𝒫 cpw 4580   class class class wbr 5124   × cxp 5657  wf 6532  *cxr 11273   < clt 11274  cle 11275  [,)cico 13369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-xr 11278  df-ico 13373
This theorem is referenced by:  fvvolicof  45987  volicoff  45991  voliooicof  45992  ovolval5lem2  46649  ovolval5lem3  46650  ovnovollem1  46652  ovnovollem2  46653
  Copyright terms: Public domain W3C validator