Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elicores Structured version   Visualization version   GIF version

Theorem elicores 41788
 Description: Membership in a left-closed, right-open interval with real bounds. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
elicores (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem elicores
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ico 12736 . . . . . 6 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
21reseq1i 5842 . . . . 5 ([,) ↾ (ℝ × ℝ)) = ((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↾ (ℝ × ℝ))
3 ressxr 10677 . . . . . 6 ℝ ⊆ ℝ*
4 resmpo 7264 . . . . . 6 ((ℝ ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → ((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}))
53, 3, 4mp2an 690 . . . . 5 ((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
62, 5eqtri 2842 . . . 4 ([,) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
76rneqi 5800 . . 3 ran ([,) ↾ (ℝ × ℝ)) = ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
87eleq2i 2902 . 2 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ 𝐴 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}))
9 eqid 2819 . . 3 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
10 xrex 12378 . . . 4 * ∈ V
1110rabex 5226 . . 3 {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ V
129, 11elrnmpo 7279 . 2 (𝐴 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
133sseli 3961 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
1413adantr 483 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℝ*)
153sseli 3961 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
1615adantl 484 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ*)
17 icoval 12768 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥[,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
1814, 16, 17syl2anc 586 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥[,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
1918eqcomd 2825 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} = (𝑥[,)𝑦))
2019eqeq2d 2830 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ↔ 𝐴 = (𝑥[,)𝑦)))
2120rexbidva 3294 . . 3 (𝑥 ∈ ℝ → (∃𝑦 ∈ ℝ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ↔ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦)))
2221rexbiia 3244 . 2 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦))
238, 12, 223bitri 299 1 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 208   ∧ wa 398   = wceq 1530   ∈ wcel 2107  ∃wrex 3137  {crab 3140   ⊆ wss 3934   class class class wbr 5057   × cxp 5546  ran crn 5549   ↾ cres 5550  (class class class)co 7148   ∈ cmpo 7150  ℝcr 10528  ℝ*cxr 10666   < clt 10667   ≤ cle 10668  [,)cico 12732 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-iota 6307  df-fun 6350  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-xr 10671  df-ico 12736 This theorem is referenced by:  icoresmbl  42805
 Copyright terms: Public domain W3C validator