Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elicores Structured version   Visualization version   GIF version

Theorem elicores 44818
Description: Membership in a left-closed, right-open interval with real bounds. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
elicores (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem elicores
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ico 13336 . . . . . 6 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
21reseq1i 5971 . . . . 5 ([,) ↾ (ℝ × ℝ)) = ((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↾ (ℝ × ℝ))
3 ressxr 11262 . . . . . 6 ℝ ⊆ ℝ*
4 resmpo 7524 . . . . . 6 ((ℝ ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → ((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}))
53, 3, 4mp2an 689 . . . . 5 ((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
62, 5eqtri 2754 . . . 4 ([,) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
76rneqi 5930 . . 3 ran ([,) ↾ (ℝ × ℝ)) = ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
87eleq2i 2819 . 2 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ 𝐴 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}))
9 eqid 2726 . . 3 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
10 xrex 12975 . . . 4 * ∈ V
1110rabex 5325 . . 3 {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ V
129, 11elrnmpo 7541 . 2 (𝐴 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
133sseli 3973 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
1413adantr 480 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℝ*)
153sseli 3973 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
1615adantl 481 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ*)
17 icoval 13368 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥[,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
1814, 16, 17syl2anc 583 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥[,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
1918eqcomd 2732 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} = (𝑥[,)𝑦))
2019eqeq2d 2737 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ↔ 𝐴 = (𝑥[,)𝑦)))
2120rexbidva 3170 . . 3 (𝑥 ∈ ℝ → (∃𝑦 ∈ ℝ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ↔ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦)))
2221rexbiia 3086 . 2 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦))
238, 12, 223bitri 297 1 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1533  wcel 2098  wrex 3064  {crab 3426  wss 3943   class class class wbr 5141   × cxp 5667  ran crn 5670  cres 5671  (class class class)co 7405  cmpo 7407  cr 11111  *cxr 11251   < clt 11252  cle 11253  [,)cico 13332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-iota 6489  df-fun 6539  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-xr 11256  df-ico 13336
This theorem is referenced by:  icoresmbl  45831
  Copyright terms: Public domain W3C validator