Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volicorescl Structured version   Visualization version   GIF version

Theorem volicorescl 46474
Description: The Lebesgue measure of a left-closed, right-open interval with real bounds, is real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
volicorescl (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → (vol‘𝐴) ∈ ℝ)

Proof of Theorem volicorescl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 13413 . . . . . . . . 9 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
21reseq1i 6005 . . . . . . . 8 ([,) ↾ (ℝ × ℝ)) = ((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↾ (ℝ × ℝ))
3 ressxr 11334 . . . . . . . . 9 ℝ ⊆ ℝ*
4 resmpo 7570 . . . . . . . . 9 ((ℝ ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → ((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}))
53, 3, 4mp2an 691 . . . . . . . 8 ((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
62, 5eqtri 2768 . . . . . . 7 ([,) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
76rneqi 5962 . . . . . 6 ran ([,) ↾ (ℝ × ℝ)) = ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
87eleq2i 2836 . . . . 5 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ 𝐴 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}))
98biimpi 216 . . . 4 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → 𝐴 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}))
10 eqid 2740 . . . . 5 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
11 xrex 13052 . . . . . 6 * ∈ V
1211rabex 5357 . . . . 5 {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ V
1310, 12elrnmpo 7586 . . . 4 (𝐴 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
149, 13sylib 218 . . 3 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
15 simpr 484 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
163sseli 4004 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
1716adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℝ*)
183sseli 4004 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
1918adantl 481 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ*)
20 icoval 13445 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥[,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
2117, 19, 20syl2anc 583 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥[,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
2221eqcomd 2746 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} = (𝑥[,)𝑦))
2322adantr 480 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} = (𝑥[,)𝑦))
2415, 23eqtrd 2780 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝐴 = (𝑥[,)𝑦))
2524ex 412 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} → 𝐴 = (𝑥[,)𝑦)))
2625adantll 713 . . . . 5 (((𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} → 𝐴 = (𝑥[,)𝑦)))
2726reximdva 3174 . . . 4 ((𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ ℝ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} → ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦)))
2827reximdva 3174 . . 3 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦)))
2914, 28mpd 15 . 2 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦))
30 fveq2 6920 . . . . . . . . . 10 (𝐴 = (𝑥[,)𝑦) → (vol‘𝐴) = (vol‘(𝑥[,)𝑦)))
3130adantl 481 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥[,)𝑦)) → (vol‘𝐴) = (vol‘(𝑥[,)𝑦)))
32 volicorecl 46467 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (vol‘(𝑥[,)𝑦)) ∈ ℝ)
3332adantr 480 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥[,)𝑦)) → (vol‘(𝑥[,)𝑦)) ∈ ℝ)
3431, 33eqeltrd 2844 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥[,)𝑦)) → (vol‘𝐴) ∈ ℝ)
3534ex 412 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥[,)𝑦) → (vol‘𝐴) ∈ ℝ))
3635a1i 11 . . . . . 6 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥[,)𝑦) → (vol‘𝐴) ∈ ℝ)))
3736rexlimdvv 3218 . . . . 5 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦) → (vol‘𝐴) ∈ ℝ))
3829, 37mpd 15 . . . 4 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → (vol‘𝐴) ∈ ℝ)
39382a1d 26 . . 3 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥[,)𝑦) → (vol‘𝐴) ∈ ℝ)))
4039rexlimdvv 3218 . 2 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦) → (vol‘𝐴) ∈ ℝ))
4129, 40mpd 15 1 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → (vol‘𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  wss 3976   class class class wbr 5166   × cxp 5698  ran crn 5701  cres 5702  cfv 6573  (class class class)co 7448  cmpo 7450  cr 11183  *cxr 11323   < clt 11324  cle 11325  [,)cico 13409  volcvol 25517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-rest 17482  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-cmp 23416  df-ovol 25518  df-vol 25519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator