Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volicorescl Structured version   Visualization version   GIF version

Theorem volicorescl 46570
Description: The Lebesgue measure of a left-closed, right-open interval with real bounds, is real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
volicorescl (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → (vol‘𝐴) ∈ ℝ)

Proof of Theorem volicorescl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 13243 . . . . . . . . 9 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
21reseq1i 5921 . . . . . . . 8 ([,) ↾ (ℝ × ℝ)) = ((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↾ (ℝ × ℝ))
3 ressxr 11148 . . . . . . . . 9 ℝ ⊆ ℝ*
4 resmpo 7461 . . . . . . . . 9 ((ℝ ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → ((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}))
53, 3, 4mp2an 692 . . . . . . . 8 ((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
62, 5eqtri 2753 . . . . . . 7 ([,) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
76rneqi 5874 . . . . . 6 ran ([,) ↾ (ℝ × ℝ)) = ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
87eleq2i 2821 . . . . 5 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ 𝐴 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}))
98biimpi 216 . . . 4 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → 𝐴 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}))
10 eqid 2730 . . . . 5 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
11 xrex 12877 . . . . . 6 * ∈ V
1211rabex 5275 . . . . 5 {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ V
1310, 12elrnmpo 7477 . . . 4 (𝐴 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
149, 13sylib 218 . . 3 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
15 simpr 484 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
163sseli 3928 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
1716adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℝ*)
183sseli 3928 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
1918adantl 481 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ*)
20 icoval 13275 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥[,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
2117, 19, 20syl2anc 584 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥[,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
2221eqcomd 2736 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} = (𝑥[,)𝑦))
2322adantr 480 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} = (𝑥[,)𝑦))
2415, 23eqtrd 2765 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝐴 = (𝑥[,)𝑦))
2524ex 412 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} → 𝐴 = (𝑥[,)𝑦)))
2625adantll 714 . . . . 5 (((𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} → 𝐴 = (𝑥[,)𝑦)))
2726reximdva 3143 . . . 4 ((𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ ℝ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} → ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦)))
2827reximdva 3143 . . 3 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦)))
2914, 28mpd 15 . 2 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦))
30 fveq2 6817 . . . . . . . . . 10 (𝐴 = (𝑥[,)𝑦) → (vol‘𝐴) = (vol‘(𝑥[,)𝑦)))
3130adantl 481 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥[,)𝑦)) → (vol‘𝐴) = (vol‘(𝑥[,)𝑦)))
32 volicorecl 46563 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (vol‘(𝑥[,)𝑦)) ∈ ℝ)
3332adantr 480 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥[,)𝑦)) → (vol‘(𝑥[,)𝑦)) ∈ ℝ)
3431, 33eqeltrd 2829 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥[,)𝑦)) → (vol‘𝐴) ∈ ℝ)
3534ex 412 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥[,)𝑦) → (vol‘𝐴) ∈ ℝ))
3635a1i 11 . . . . . 6 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥[,)𝑦) → (vol‘𝐴) ∈ ℝ)))
3736rexlimdvv 3186 . . . . 5 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦) → (vol‘𝐴) ∈ ℝ))
3829, 37mpd 15 . . . 4 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → (vol‘𝐴) ∈ ℝ)
39382a1d 26 . . 3 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥[,)𝑦) → (vol‘𝐴) ∈ ℝ)))
4039rexlimdvv 3186 . 2 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦) → (vol‘𝐴) ∈ ℝ))
4129, 40mpd 15 1 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → (vol‘𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  wrex 3054  {crab 3393  wss 3900   class class class wbr 5089   × cxp 5612  ran crn 5615  cres 5616  cfv 6477  (class class class)co 7341  cmpo 7343  cr 10997  *cxr 11137   < clt 11138  cle 11139  [,)cico 13239  volcvol 25384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-z 12461  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-seq 13901  df-exp 13961  df-hash 14230  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-clim 15387  df-rlim 15388  df-sum 15586  df-rest 17318  df-topgen 17339  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-top 22802  df-topon 22819  df-bases 22854  df-cmp 23295  df-ovol 25385  df-vol 25386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator