Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volicorescl Structured version   Visualization version   GIF version

Theorem volicorescl 46656
Description: The Lebesgue measure of a left-closed, right-open interval with real bounds, is real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
volicorescl (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → (vol‘𝐴) ∈ ℝ)

Proof of Theorem volicorescl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 13257 . . . . . . . . 9 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
21reseq1i 5929 . . . . . . . 8 ([,) ↾ (ℝ × ℝ)) = ((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↾ (ℝ × ℝ))
3 ressxr 11162 . . . . . . . . 9 ℝ ⊆ ℝ*
4 resmpo 7472 . . . . . . . . 9 ((ℝ ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → ((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}))
53, 3, 4mp2an 692 . . . . . . . 8 ((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
62, 5eqtri 2754 . . . . . . 7 ([,) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
76rneqi 5882 . . . . . 6 ran ([,) ↾ (ℝ × ℝ)) = ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
87eleq2i 2823 . . . . 5 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ 𝐴 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}))
98biimpi 216 . . . 4 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → 𝐴 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}))
10 eqid 2731 . . . . 5 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
11 xrex 12891 . . . . . 6 * ∈ V
1211rabex 5279 . . . . 5 {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ∈ V
1310, 12elrnmpo 7488 . . . 4 (𝐴 ∈ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
149, 13sylib 218 . . 3 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
15 simpr 484 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
163sseli 3925 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
1716adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℝ*)
183sseli 3925 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
1918adantl 481 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ*)
20 icoval 13289 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥[,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
2117, 19, 20syl2anc 584 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥[,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
2221eqcomd 2737 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} = (𝑥[,)𝑦))
2322adantr 480 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} = (𝑥[,)𝑦))
2415, 23eqtrd 2766 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) → 𝐴 = (𝑥[,)𝑦))
2524ex 412 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} → 𝐴 = (𝑥[,)𝑦)))
2625adantll 714 . . . . 5 (((𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} → 𝐴 = (𝑥[,)𝑦)))
2726reximdva 3145 . . . 4 ((𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ ℝ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} → ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦)))
2827reximdva 3145 . . 3 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦)))
2914, 28mpd 15 . 2 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦))
30 fveq2 6828 . . . . . . . . . 10 (𝐴 = (𝑥[,)𝑦) → (vol‘𝐴) = (vol‘(𝑥[,)𝑦)))
3130adantl 481 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥[,)𝑦)) → (vol‘𝐴) = (vol‘(𝑥[,)𝑦)))
32 volicorecl 46649 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (vol‘(𝑥[,)𝑦)) ∈ ℝ)
3332adantr 480 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥[,)𝑦)) → (vol‘(𝑥[,)𝑦)) ∈ ℝ)
3431, 33eqeltrd 2831 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥[,)𝑦)) → (vol‘𝐴) ∈ ℝ)
3534ex 412 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥[,)𝑦) → (vol‘𝐴) ∈ ℝ))
3635a1i 11 . . . . . 6 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥[,)𝑦) → (vol‘𝐴) ∈ ℝ)))
3736rexlimdvv 3188 . . . . 5 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦) → (vol‘𝐴) ∈ ℝ))
3829, 37mpd 15 . . . 4 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → (vol‘𝐴) ∈ ℝ)
39382a1d 26 . . 3 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥[,)𝑦) → (vol‘𝐴) ∈ ℝ)))
4039rexlimdvv 3188 . 2 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦) → (vol‘𝐴) ∈ ℝ))
4129, 40mpd 15 1 (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → (vol‘𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  wss 3897   class class class wbr 5093   × cxp 5617  ran crn 5620  cres 5621  cfv 6487  (class class class)co 7352  cmpo 7354  cr 11011  *cxr 11151   < clt 11152  cle 11153  [,)cico 13253  volcvol 25397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9537  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9800  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-3 12195  df-n0 12388  df-z 12475  df-uz 12739  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13255  df-ico 13257  df-icc 13258  df-fz 13414  df-fzo 13561  df-fl 13702  df-seq 13915  df-exp 13975  df-hash 14244  df-cj 15012  df-re 15013  df-im 15014  df-sqrt 15148  df-abs 15149  df-clim 15401  df-rlim 15402  df-sum 15600  df-rest 17332  df-topgen 17353  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-top 22815  df-topon 22832  df-bases 22867  df-cmp 23308  df-ovol 25398  df-vol 25399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator