| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elicore | Structured version Visualization version GIF version | ||
| Description: A member of a left-closed right-open interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| elicore | ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ico 13394 | . . . . . . 7 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 2 | 1 | elixx3g 13401 | . . . . . 6 ⊢ (𝐶 ∈ (𝐴[,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
| 3 | 2 | biimpi 216 | . . . . 5 ⊢ (𝐶 ∈ (𝐴[,)𝐵) → ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
| 4 | 3 | simpld 494 | . . . 4 ⊢ (𝐶 ∈ (𝐴[,)𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) |
| 5 | 4 | simp3d 1144 | . . 3 ⊢ (𝐶 ∈ (𝐴[,)𝐵) → 𝐶 ∈ ℝ*) |
| 6 | 5 | adantl 481 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ*) |
| 7 | simpl 482 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐴 ∈ ℝ) | |
| 8 | 3 | simprd 495 | . . . 4 ⊢ (𝐶 ∈ (𝐴[,)𝐵) → (𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) |
| 9 | 8 | simpld 494 | . . 3 ⊢ (𝐶 ∈ (𝐴[,)𝐵) → 𝐴 ≤ 𝐶) |
| 10 | 9 | adantl 481 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐴 ≤ 𝐶) |
| 11 | 4 | simp2d 1143 | . . . 4 ⊢ (𝐶 ∈ (𝐴[,)𝐵) → 𝐵 ∈ ℝ*) |
| 12 | 11 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐵 ∈ ℝ*) |
| 13 | pnfxr 11316 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 14 | 13 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → +∞ ∈ ℝ*) |
| 15 | 8 | simprd 495 | . . . 4 ⊢ (𝐶 ∈ (𝐴[,)𝐵) → 𝐶 < 𝐵) |
| 16 | 15 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 < 𝐵) |
| 17 | pnfge 13173 | . . . . 5 ⊢ (𝐵 ∈ ℝ* → 𝐵 ≤ +∞) | |
| 18 | 11, 17 | syl 17 | . . . 4 ⊢ (𝐶 ∈ (𝐴[,)𝐵) → 𝐵 ≤ +∞) |
| 19 | 18 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐵 ≤ +∞) |
| 20 | 6, 12, 14, 16, 19 | xrltletrd 13204 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 < +∞) |
| 21 | xrre3 13214 | . 2 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ) ∧ (𝐴 ≤ 𝐶 ∧ 𝐶 < +∞)) → 𝐶 ∈ ℝ) | |
| 22 | 6, 7, 10, 20, 21 | syl22anc 838 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 class class class wbr 5142 (class class class)co 7432 ℝcr 11155 +∞cpnf 11293 ℝ*cxr 11295 < clt 11296 ≤ cle 11297 [,)cico 13390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-pre-lttri 11230 ax-pre-lttrn 11231 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-ico 13394 |
| This theorem is referenced by: relowlpssretop 37366 limsupresico 45720 liminfresico 45791 fourierdlem43 46170 |
| Copyright terms: Public domain | W3C validator |