| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > icossxr | Structured version Visualization version GIF version | ||
| Description: A closed-below, open-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| icossxr | ⊢ (𝐴[,)𝐵) ⊆ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ico 13319 | . 2 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 2 | 1 | ixxssxr 13325 | 1 ⊢ (𝐴[,)𝐵) ⊆ ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3917 (class class class)co 7390 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 [,)cico 13315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-xr 11219 df-ico 13319 |
| This theorem is referenced by: leordtvallem2 23105 leordtval2 23106 nmoffn 24606 nmofval 24609 nmogelb 24611 nmolb 24612 nmof 24614 icopnfhmeo 24848 elovolm 25383 ovolmge0 25385 ovolgelb 25388 ovollb2lem 25396 ovoliunlem1 25410 ovoliunlem2 25411 ovolscalem1 25421 ovolicc1 25424 ioombl1lem2 25467 ioombl1lem4 25469 uniioovol 25487 uniiccvol 25488 uniioombllem1 25489 uniioombllem2 25491 uniioombllem3 25493 uniioombllem6 25496 ply1degltdimlem 33625 esumpfinvallem 34071 esummulc1 34078 esummulc2 34079 mblfinlem3 37660 mblfinlem4 37661 ismblfin 37662 itg2gt0cn 37676 xralrple2 45357 icoub 45531 liminflelimsuplem 45780 elhoi 46547 hoidmvlelem5 46604 ovnhoilem1 46606 ovnhoilem2 46607 ovnhoi 46608 |
| Copyright terms: Public domain | W3C validator |