| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > icossxr | Structured version Visualization version GIF version | ||
| Description: A closed-below, open-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| icossxr | ⊢ (𝐴[,)𝐵) ⊆ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ico 13368 | . 2 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 2 | 1 | ixxssxr 13374 | 1 ⊢ (𝐴[,)𝐵) ⊆ ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3926 (class class class)co 7405 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 [,)cico 13364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-xr 11273 df-ico 13368 |
| This theorem is referenced by: leordtvallem2 23149 leordtval2 23150 nmoffn 24650 nmofval 24653 nmogelb 24655 nmolb 24656 nmof 24658 icopnfhmeo 24892 elovolm 25428 ovolmge0 25430 ovolgelb 25433 ovollb2lem 25441 ovoliunlem1 25455 ovoliunlem2 25456 ovolscalem1 25466 ovolicc1 25469 ioombl1lem2 25512 ioombl1lem4 25514 uniioovol 25532 uniiccvol 25533 uniioombllem1 25534 uniioombllem2 25536 uniioombllem3 25538 uniioombllem6 25541 ply1degltdimlem 33662 esumpfinvallem 34105 esummulc1 34112 esummulc2 34113 mblfinlem3 37683 mblfinlem4 37684 ismblfin 37685 itg2gt0cn 37699 xralrple2 45381 icoub 45555 liminflelimsuplem 45804 elhoi 46571 hoidmvlelem5 46628 ovnhoilem1 46630 ovnhoilem2 46631 ovnhoi 46632 |
| Copyright terms: Public domain | W3C validator |