![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > icossxr | Structured version Visualization version GIF version |
Description: A closed-below, open-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.) |
Ref | Expression |
---|---|
icossxr | ⊢ (𝐴[,)𝐵) ⊆ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ico 12497 | . 2 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
2 | 1 | ixxssxr 12503 | 1 ⊢ (𝐴[,)𝐵) ⊆ ℝ* |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3792 (class class class)co 6924 ℝ*cxr 10412 < clt 10413 ≤ cle 10414 [,)cico 12493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-fv 6145 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-1st 7447 df-2nd 7448 df-xr 10417 df-ico 12497 |
This theorem is referenced by: leordtvallem2 21427 leordtval2 21428 nmoffn 22927 nmofval 22930 nmogelb 22932 nmolb 22933 nmof 22935 icopnfhmeo 23154 elovolm 23683 ovolmge0 23685 ovolgelb 23688 ovollb2lem 23696 ovoliunlem1 23710 ovoliunlem2 23711 ovolscalem1 23721 ovolicc1 23724 ioombl1lem2 23767 ioombl1lem4 23769 uniioovol 23787 uniiccvol 23788 uniioombllem1 23789 uniioombllem2 23791 uniioombllem3 23793 uniioombllem6 23796 esumpfinvallem 30738 esummulc1 30745 esummulc2 30746 mblfinlem3 34079 mblfinlem4 34080 ismblfin 34081 itg2gt0cn 34095 xralrple2 40488 icoub 40671 liminflelimsuplem 40925 elhoi 41693 hoidmvlelem5 41750 ovnhoilem1 41752 ovnhoilem2 41753 ovnhoi 41754 |
Copyright terms: Public domain | W3C validator |