Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > icossxr | Structured version Visualization version GIF version |
Description: A closed-below, open-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.) |
Ref | Expression |
---|---|
icossxr | ⊢ (𝐴[,)𝐵) ⊆ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ico 13186 | . 2 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
2 | 1 | ixxssxr 13192 | 1 ⊢ (𝐴[,)𝐵) ⊆ ℝ* |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3898 (class class class)co 7337 ℝ*cxr 11109 < clt 11110 ≤ cle 11111 [,)cico 13182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-1st 7899 df-2nd 7900 df-xr 11114 df-ico 13186 |
This theorem is referenced by: leordtvallem2 22468 leordtval2 22469 nmoffn 23981 nmofval 23984 nmogelb 23986 nmolb 23987 nmof 23989 icopnfhmeo 24212 elovolm 24745 ovolmge0 24747 ovolgelb 24750 ovollb2lem 24758 ovoliunlem1 24772 ovoliunlem2 24773 ovolscalem1 24783 ovolicc1 24786 ioombl1lem2 24829 ioombl1lem4 24831 uniioovol 24849 uniiccvol 24850 uniioombllem1 24851 uniioombllem2 24853 uniioombllem3 24855 uniioombllem6 24858 esumpfinvallem 32340 esummulc1 32347 esummulc2 32348 mblfinlem3 35929 mblfinlem4 35930 ismblfin 35931 itg2gt0cn 35945 xralrple2 43237 icoub 43409 liminflelimsuplem 43661 elhoi 44426 hoidmvlelem5 44483 ovnhoilem1 44485 ovnhoilem2 44486 ovnhoi 44487 |
Copyright terms: Public domain | W3C validator |