![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > icossxr | Structured version Visualization version GIF version |
Description: A closed-below, open-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.) |
Ref | Expression |
---|---|
icossxr | ⊢ (𝐴[,)𝐵) ⊆ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ico 13390 | . 2 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
2 | 1 | ixxssxr 13396 | 1 ⊢ (𝐴[,)𝐵) ⊆ ℝ* |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3963 (class class class)co 7431 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 [,)cico 13386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-xr 11297 df-ico 13390 |
This theorem is referenced by: leordtvallem2 23235 leordtval2 23236 nmoffn 24748 nmofval 24751 nmogelb 24753 nmolb 24754 nmof 24756 icopnfhmeo 24988 elovolm 25524 ovolmge0 25526 ovolgelb 25529 ovollb2lem 25537 ovoliunlem1 25551 ovoliunlem2 25552 ovolscalem1 25562 ovolicc1 25565 ioombl1lem2 25608 ioombl1lem4 25610 uniioovol 25628 uniiccvol 25629 uniioombllem1 25630 uniioombllem2 25632 uniioombllem3 25634 uniioombllem6 25637 ply1degltdimlem 33650 esumpfinvallem 34055 esummulc1 34062 esummulc2 34063 mblfinlem3 37646 mblfinlem4 37647 ismblfin 37648 itg2gt0cn 37662 xralrple2 45304 icoub 45479 liminflelimsuplem 45731 elhoi 46498 hoidmvlelem5 46555 ovnhoilem1 46557 ovnhoilem2 46558 ovnhoi 46559 |
Copyright terms: Public domain | W3C validator |