Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > icossxr | Structured version Visualization version GIF version |
Description: A closed-below, open-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.) |
Ref | Expression |
---|---|
icossxr | ⊢ (𝐴[,)𝐵) ⊆ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ico 13085 | . 2 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
2 | 1 | ixxssxr 13091 | 1 ⊢ (𝐴[,)𝐵) ⊆ ℝ* |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3887 (class class class)co 7275 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 [,)cico 13081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-xr 11013 df-ico 13085 |
This theorem is referenced by: leordtvallem2 22362 leordtval2 22363 nmoffn 23875 nmofval 23878 nmogelb 23880 nmolb 23881 nmof 23883 icopnfhmeo 24106 elovolm 24639 ovolmge0 24641 ovolgelb 24644 ovollb2lem 24652 ovoliunlem1 24666 ovoliunlem2 24667 ovolscalem1 24677 ovolicc1 24680 ioombl1lem2 24723 ioombl1lem4 24725 uniioovol 24743 uniiccvol 24744 uniioombllem1 24745 uniioombllem2 24747 uniioombllem3 24749 uniioombllem6 24752 esumpfinvallem 32042 esummulc1 32049 esummulc2 32050 mblfinlem3 35816 mblfinlem4 35817 ismblfin 35818 itg2gt0cn 35832 xralrple2 42893 icoub 43064 liminflelimsuplem 43316 elhoi 44080 hoidmvlelem5 44137 ovnhoilem1 44139 ovnhoilem2 44140 ovnhoi 44141 |
Copyright terms: Public domain | W3C validator |