| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > icossxr | Structured version Visualization version GIF version | ||
| Description: A closed-below, open-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| icossxr | ⊢ (𝐴[,)𝐵) ⊆ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ico 13248 | . 2 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 2 | 1 | ixxssxr 13254 | 1 ⊢ (𝐴[,)𝐵) ⊆ ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3902 (class class class)co 7346 ℝ*cxr 11142 < clt 11143 ≤ cle 11144 [,)cico 13244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-xr 11147 df-ico 13248 |
| This theorem is referenced by: leordtvallem2 23124 leordtval2 23125 nmoffn 24624 nmofval 24627 nmogelb 24629 nmolb 24630 nmof 24632 icopnfhmeo 24866 elovolm 25401 ovolmge0 25403 ovolgelb 25406 ovollb2lem 25414 ovoliunlem1 25428 ovoliunlem2 25429 ovolscalem1 25439 ovolicc1 25442 ioombl1lem2 25485 ioombl1lem4 25487 uniioovol 25505 uniiccvol 25506 uniioombllem1 25507 uniioombllem2 25509 uniioombllem3 25511 uniioombllem6 25514 ply1degltdimlem 33630 esumpfinvallem 34082 esummulc1 34089 esummulc2 34090 mblfinlem3 37698 mblfinlem4 37699 ismblfin 37700 itg2gt0cn 37714 xralrple2 45392 icoub 45565 liminflelimsuplem 45812 elhoi 46579 hoidmvlelem5 46636 ovnhoilem1 46638 ovnhoilem2 46639 ovnhoi 46640 |
| Copyright terms: Public domain | W3C validator |