![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > icossxr | Structured version Visualization version GIF version |
Description: A closed-below, open-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.) |
Ref | Expression |
---|---|
icossxr | ⊢ (𝐴[,)𝐵) ⊆ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ico 13334 | . 2 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
2 | 1 | ixxssxr 13340 | 1 ⊢ (𝐴[,)𝐵) ⊆ ℝ* |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3947 (class class class)co 7411 ℝ*cxr 11251 < clt 11252 ≤ cle 11253 [,)cico 13330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-xr 11256 df-ico 13334 |
This theorem is referenced by: leordtvallem2 22935 leordtval2 22936 nmoffn 24448 nmofval 24451 nmogelb 24453 nmolb 24454 nmof 24456 icopnfhmeo 24688 elovolm 25224 ovolmge0 25226 ovolgelb 25229 ovollb2lem 25237 ovoliunlem1 25251 ovoliunlem2 25252 ovolscalem1 25262 ovolicc1 25265 ioombl1lem2 25308 ioombl1lem4 25310 uniioovol 25328 uniiccvol 25329 uniioombllem1 25330 uniioombllem2 25332 uniioombllem3 25334 uniioombllem6 25337 ply1degltdimlem 32995 esumpfinvallem 33370 esummulc1 33377 esummulc2 33378 mblfinlem3 36830 mblfinlem4 36831 ismblfin 36832 itg2gt0cn 36846 xralrple2 44362 icoub 44537 liminflelimsuplem 44789 elhoi 45556 hoidmvlelem5 45613 ovnhoilem1 45615 ovnhoilem2 45616 ovnhoi 45617 |
Copyright terms: Public domain | W3C validator |