| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > icossxr | Structured version Visualization version GIF version | ||
| Description: A closed-below, open-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| icossxr | ⊢ (𝐴[,)𝐵) ⊆ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ico 13272 | . 2 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 2 | 1 | ixxssxr 13278 | 1 ⊢ (𝐴[,)𝐵) ⊆ ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3905 (class class class)co 7353 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 [,)cico 13268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-xr 11172 df-ico 13272 |
| This theorem is referenced by: leordtvallem2 23114 leordtval2 23115 nmoffn 24615 nmofval 24618 nmogelb 24620 nmolb 24621 nmof 24623 icopnfhmeo 24857 elovolm 25392 ovolmge0 25394 ovolgelb 25397 ovollb2lem 25405 ovoliunlem1 25419 ovoliunlem2 25420 ovolscalem1 25430 ovolicc1 25433 ioombl1lem2 25476 ioombl1lem4 25478 uniioovol 25496 uniiccvol 25497 uniioombllem1 25498 uniioombllem2 25500 uniioombllem3 25502 uniioombllem6 25505 ply1degltdimlem 33594 esumpfinvallem 34040 esummulc1 34047 esummulc2 34048 mblfinlem3 37638 mblfinlem4 37639 ismblfin 37640 itg2gt0cn 37654 xralrple2 45334 icoub 45508 liminflelimsuplem 45757 elhoi 46524 hoidmvlelem5 46581 ovnhoilem1 46583 ovnhoilem2 46584 ovnhoi 46585 |
| Copyright terms: Public domain | W3C validator |