| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > icossxr | Structured version Visualization version GIF version | ||
| Description: A closed-below, open-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| icossxr | ⊢ (𝐴[,)𝐵) ⊆ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ico 13312 | . 2 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 2 | 1 | ixxssxr 13318 | 1 ⊢ (𝐴[,)𝐵) ⊆ ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 (class class class)co 7387 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 [,)cico 13308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-xr 11212 df-ico 13312 |
| This theorem is referenced by: leordtvallem2 23098 leordtval2 23099 nmoffn 24599 nmofval 24602 nmogelb 24604 nmolb 24605 nmof 24607 icopnfhmeo 24841 elovolm 25376 ovolmge0 25378 ovolgelb 25381 ovollb2lem 25389 ovoliunlem1 25403 ovoliunlem2 25404 ovolscalem1 25414 ovolicc1 25417 ioombl1lem2 25460 ioombl1lem4 25462 uniioovol 25480 uniiccvol 25481 uniioombllem1 25482 uniioombllem2 25484 uniioombllem3 25486 uniioombllem6 25489 ply1degltdimlem 33618 esumpfinvallem 34064 esummulc1 34071 esummulc2 34072 mblfinlem3 37653 mblfinlem4 37654 ismblfin 37655 itg2gt0cn 37669 xralrple2 45350 icoub 45524 liminflelimsuplem 45773 elhoi 46540 hoidmvlelem5 46597 ovnhoilem1 46599 ovnhoilem2 46600 ovnhoi 46601 |
| Copyright terms: Public domain | W3C validator |