| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > icossxr | Structured version Visualization version GIF version | ||
| Description: A closed-below, open-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| icossxr | ⊢ (𝐴[,)𝐵) ⊆ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ico 13253 | . 2 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 2 | 1 | ixxssxr 13259 | 1 ⊢ (𝐴[,)𝐵) ⊆ ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3898 (class class class)co 7352 ℝ*cxr 11152 < clt 11153 ≤ cle 11154 [,)cico 13249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-xr 11157 df-ico 13253 |
| This theorem is referenced by: leordtvallem2 23127 leordtval2 23128 nmoffn 24627 nmofval 24630 nmogelb 24632 nmolb 24633 nmof 24635 icopnfhmeo 24869 elovolm 25404 ovolmge0 25406 ovolgelb 25409 ovollb2lem 25417 ovoliunlem1 25431 ovoliunlem2 25432 ovolscalem1 25442 ovolicc1 25445 ioombl1lem2 25488 ioombl1lem4 25490 uniioovol 25508 uniiccvol 25509 uniioombllem1 25510 uniioombllem2 25512 uniioombllem3 25514 uniioombllem6 25517 ply1degltdimlem 33656 esumpfinvallem 34108 esummulc1 34115 esummulc2 34116 mblfinlem3 37719 mblfinlem4 37720 ismblfin 37721 itg2gt0cn 37735 xralrple2 45477 icoub 45650 liminflelimsuplem 45897 elhoi 46664 hoidmvlelem5 46721 ovnhoilem1 46723 ovnhoilem2 46724 ovnhoi 46725 |
| Copyright terms: Public domain | W3C validator |