Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfgord Structured version   Visualization version   GIF version

Theorem liminfgord 45749
Description: Ordering property of the inferior limit function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
liminfgord ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < ))

Proof of Theorem liminfgord
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 4185 . . . . 5 ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*) ⊆ ℝ*
21a1i 11 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)) → ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
3 rexr 11149 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
433ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 ∈ ℝ*)
5 simp3 1138 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴𝐵)
6 df-ico 13242 . . . . . . . 8 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
7 xrletr 13048 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝐵𝐵𝑤) → 𝐴𝑤))
86, 6, 7ixxss1 13254 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴𝐵) → (𝐵[,)+∞) ⊆ (𝐴[,)+∞))
94, 5, 8syl2anc 584 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐵[,)+∞) ⊆ (𝐴[,)+∞))
10 imass2 6047 . . . . . 6 ((𝐵[,)+∞) ⊆ (𝐴[,)+∞) → (𝐹 “ (𝐵[,)+∞)) ⊆ (𝐹 “ (𝐴[,)+∞)))
11 ssrin 4189 . . . . . 6 ((𝐹 “ (𝐵[,)+∞)) ⊆ (𝐹 “ (𝐴[,)+∞)) → ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*))
129, 10, 113syl 18 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*))
1312sselda 3931 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)) → 𝑥 ∈ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*))
14 infxrlb 13225 . . . 4 ((((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*) ⊆ ℝ*𝑥 ∈ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*)) → inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑥)
152, 13, 14syl2anc 584 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)) → inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑥)
1615ralrimiva 3121 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ∀𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑥)
17 inss2 4185 . . 3 ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ℝ*
18 infxrcl 13224 . . . 4 (((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*) ⊆ ℝ* → inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
191, 18ax-mp 5 . . 3 inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
20 infxrgelb 13226 . . 3 ((((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ℝ* ∧ inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) → (inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑥))
2117, 19, 20mp2an 692 . 2 (inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑥)
2216, 21sylibr 234 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wral 3044  cin 3898  wss 3899   class class class wbr 5088  cima 5616  (class class class)co 7340  infcinf 9319  cr 10996  +∞cpnf 11134  *cxr 11136   < clt 11137  cle 11138  [,)cico 13238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5231  ax-nul 5241  ax-pow 5300  ax-pr 5367  ax-un 7662  ax-cnex 11053  ax-resscn 11054  ax-1cn 11055  ax-icn 11056  ax-addcl 11057  ax-addrcl 11058  ax-mulcl 11059  ax-mulrcl 11060  ax-mulcom 11061  ax-addass 11062  ax-mulass 11063  ax-distr 11064  ax-i2m1 11065  ax-1ne0 11066  ax-1rid 11067  ax-rnegex 11068  ax-rrecex 11069  ax-cnre 11070  ax-pre-lttri 11071  ax-pre-lttrn 11072  ax-pre-ltadd 11073  ax-pre-mulgt0 11074  ax-pre-sup 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3393  df-v 3435  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4940  df-br 5089  df-opab 5151  df-mpt 5170  df-id 5508  df-po 5521  df-so 5522  df-xp 5619  df-rel 5620  df-cnv 5621  df-co 5622  df-dm 5623  df-rn 5624  df-res 5625  df-ima 5626  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7297  df-ov 7343  df-oprab 7344  df-mpo 7345  df-1st 7915  df-2nd 7916  df-er 8616  df-en 8864  df-dom 8865  df-sdom 8866  df-sup 9320  df-inf 9321  df-pnf 11139  df-mnf 11140  df-xr 11141  df-ltxr 11142  df-le 11143  df-sub 11337  df-neg 11338  df-ico 13242
This theorem is referenced by:  liminfval2  45763
  Copyright terms: Public domain W3C validator