| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfgord | Structured version Visualization version GIF version | ||
| Description: Ordering property of the inferior limit function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| liminfgord | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 4209 | . . . . 5 ⊢ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*) ⊆ ℝ* | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ∧ 𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)) → ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*) ⊆ ℝ*) |
| 3 | rexr 11238 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 4 | 3 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ*) |
| 5 | simp3 1138 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
| 6 | df-ico 13325 | . . . . . . . 8 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 7 | xrletr 13131 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝑤) → 𝐴 ≤ 𝑤)) | |
| 8 | 6, 6, 7 | ixxss1 13337 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐵[,)+∞) ⊆ (𝐴[,)+∞)) |
| 9 | 4, 5, 8 | syl2anc 584 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐵[,)+∞) ⊆ (𝐴[,)+∞)) |
| 10 | imass2 6081 | . . . . . 6 ⊢ ((𝐵[,)+∞) ⊆ (𝐴[,)+∞) → (𝐹 “ (𝐵[,)+∞)) ⊆ (𝐹 “ (𝐴[,)+∞))) | |
| 11 | ssrin 4213 | . . . . . 6 ⊢ ((𝐹 “ (𝐵[,)+∞)) ⊆ (𝐹 “ (𝐴[,)+∞)) → ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*)) | |
| 12 | 9, 10, 11 | 3syl 18 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*)) |
| 13 | 12 | sselda 3954 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ∧ 𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)) → 𝑥 ∈ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*)) |
| 14 | infxrlb 13308 | . . . 4 ⊢ ((((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*) ⊆ ℝ* ∧ 𝑥 ∈ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*)) → inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑥) | |
| 15 | 2, 13, 14 | syl2anc 584 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) ∧ 𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)) → inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑥) |
| 16 | 15 | ralrimiva 3127 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ∀𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑥) |
| 17 | inss2 4209 | . . 3 ⊢ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ℝ* | |
| 18 | infxrcl 13307 | . . . 4 ⊢ (((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*) ⊆ ℝ* → inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) | |
| 19 | 1, 18 | ax-mp 5 | . . 3 ⊢ inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ* |
| 20 | infxrgelb 13309 | . . 3 ⊢ ((((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ℝ* ∧ inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) → (inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑥)) | |
| 21 | 17, 19, 20 | mp2an 692 | . 2 ⊢ (inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝑥) |
| 22 | 16, 21 | sylibr 234 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3046 ∩ cin 3921 ⊆ wss 3922 class class class wbr 5115 “ cima 5649 (class class class)co 7394 infcinf 9410 ℝcr 11085 +∞cpnf 11223 ℝ*cxr 11225 < clt 11226 ≤ cle 11227 [,)cico 13321 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-po 5554 df-so 5555 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-sup 9411 df-inf 9412 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-ico 13325 |
| This theorem is referenced by: liminfval2 45739 |
| Copyright terms: Public domain | W3C validator |