Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmico Structured version   Visualization version   GIF version

Theorem dmico 44278
Description: The domain of the closed-below, open-above interval function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
dmico dom [,) = (ℝ* Γ— ℝ*)

Proof of Theorem dmico
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 13330 . . 3 [,) = (π‘₯ ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (π‘₯ ≀ 𝑧 ∧ 𝑧 < 𝑦)})
21ixxf 13334 . 2 [,):(ℝ* Γ— ℝ*)βŸΆπ’« ℝ*
32fdmi 6730 1 dom [,) = (ℝ* Γ— ℝ*)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  π’« cpw 4603   Γ— cxp 5675  dom cdm 5677  β„*cxr 11247   < clt 11248   ≀ cle 11249  [,)cico 13326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-xr 11252  df-ico 13330
This theorem is referenced by:  ndmico  44279
  Copyright terms: Public domain W3C validator