MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elico1 Structured version   Visualization version   GIF version

Theorem elico1 13122
Description: Membership in a closed-below, open-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
elico1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))

Proof of Theorem elico1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 13085 . 2 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
21elixx1 13088 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wcel 2106   class class class wbr 5074  (class class class)co 7275  *cxr 11008   < clt 11009  cle 11010  [,)cico 13081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-xr 11013  df-ico 13085
This theorem is referenced by:  elicod  13129  icogelb  13130  lbico1  13133  elico2  13143  icodisj  13208  ico01fl0  13539  addmodid  13639  leordtvallem2  22362  pnfnei  22371  mnfnei  22372  blval2  23718  metuel2  23721  iscfil2  24430  eliccelico  31098  elicoelioo  31099  xrdifh  31101  fsumrp0cl  31304  xrge0iifcnv  31883  esumpcvgval  32046  dnizeq0  34655  relowlssretop  35534  tan2h  35769  iocinico  41043  rfcnpre3  42576  icoltub  43046  icoiccdif  43062  iccelpart  44885  icceuelpart  44888  bgoldbtbndlem1  45257  bgoldbtbndlem2  45258  bgoldbtbndlem3  45259  bgoldbtbnd  45261
  Copyright terms: Public domain W3C validator