Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elico1 | Structured version Visualization version GIF version |
Description: Membership in a closed-below, open-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
elico1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ico 13096 | . 2 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
2 | 1 | elixx1 13099 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2110 class class class wbr 5079 (class class class)co 7272 ℝ*cxr 11019 < clt 11020 ≤ cle 11021 [,)cico 13092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7583 ax-cnex 10938 ax-resscn 10939 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fv 6440 df-ov 7275 df-oprab 7276 df-mpo 7277 df-xr 11024 df-ico 13096 |
This theorem is referenced by: elicod 13140 icogelb 13141 lbico1 13144 elico2 13154 icodisj 13219 ico01fl0 13550 addmodid 13650 leordtvallem2 22373 pnfnei 22382 mnfnei 22383 blval2 23729 metuel2 23732 iscfil2 24441 eliccelico 31107 elicoelioo 31108 xrdifh 31110 fsumrp0cl 31313 xrge0iifcnv 31892 esumpcvgval 32055 dnizeq0 34664 relowlssretop 35543 tan2h 35778 iocinico 41052 rfcnpre3 42558 icoltub 43028 icoiccdif 43044 iccelpart 44864 icceuelpart 44867 bgoldbtbndlem1 45236 bgoldbtbndlem2 45237 bgoldbtbndlem3 45238 bgoldbtbnd 45240 |
Copyright terms: Public domain | W3C validator |