MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elico1 Structured version   Visualization version   GIF version

Theorem elico1 13391
Description: Membership in a closed-below, open-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
elico1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))

Proof of Theorem elico1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 13354 . 2 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
21elixx1 13357 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wcel 2099   class class class wbr 5142  (class class class)co 7414  *cxr 11269   < clt 11270  cle 11271  [,)cico 13350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-xr 11274  df-ico 13354
This theorem is referenced by:  elicod  13398  icogelb  13399  lbico1  13402  elico2  13412  icodisj  13477  ico01fl0  13808  addmodid  13908  leordtvallem2  23102  pnfnei  23111  mnfnei  23112  blval2  24458  metuel2  24461  iscfil2  25181  eliccelico  32529  elicoelioo  32530  xrdifh  32532  fsumrp0cl  32733  ply1degltel  33197  ply1degleel  33198  ply1degltdimlem  33252  xrge0iifcnv  33470  esumpcvgval  33633  dnizeq0  35886  relowlssretop  36778  tan2h  37020  iocinico  42563  rfcnpre3  44318  icoltub  44816  icoiccdif  44832  iccelpart  46696  icceuelpart  46699  bgoldbtbndlem1  47068  bgoldbtbndlem2  47069  bgoldbtbndlem3  47070  bgoldbtbnd  47072
  Copyright terms: Public domain W3C validator