MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elico1 Structured version   Visualization version   GIF version

Theorem elico1 13133
Description: Membership in a closed-below, open-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
elico1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))

Proof of Theorem elico1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 13096 . 2 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
21elixx1 13099 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wcel 2110   class class class wbr 5079  (class class class)co 7272  *cxr 11019   < clt 11020  cle 11021  [,)cico 13092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-iota 6390  df-fun 6434  df-fv 6440  df-ov 7275  df-oprab 7276  df-mpo 7277  df-xr 11024  df-ico 13096
This theorem is referenced by:  elicod  13140  icogelb  13141  lbico1  13144  elico2  13154  icodisj  13219  ico01fl0  13550  addmodid  13650  leordtvallem2  22373  pnfnei  22382  mnfnei  22383  blval2  23729  metuel2  23732  iscfil2  24441  eliccelico  31107  elicoelioo  31108  xrdifh  31110  fsumrp0cl  31313  xrge0iifcnv  31892  esumpcvgval  32055  dnizeq0  34664  relowlssretop  35543  tan2h  35778  iocinico  41052  rfcnpre3  42558  icoltub  43028  icoiccdif  43044  iccelpart  44864  icceuelpart  44867  bgoldbtbndlem1  45236  bgoldbtbndlem2  45237  bgoldbtbndlem3  45238  bgoldbtbnd  45240
  Copyright terms: Public domain W3C validator