MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elico1 Structured version   Visualization version   GIF version

Theorem elico1 12439
Description: Membership in a closed-below, open-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
elico1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))

Proof of Theorem elico1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 12402 . 2 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
21elixx1 12405 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100  wcel 2157   class class class wbr 4851  (class class class)co 6877  *cxr 10361   < clt 10362  cle 10363  [,)cico 12398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-sep 4982  ax-nul 4990  ax-pr 5103  ax-un 7182  ax-cnex 10280  ax-resscn 10281
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3400  df-sbc 3641  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-nul 4124  df-if 4287  df-sn 4378  df-pr 4380  df-op 4384  df-uni 4638  df-br 4852  df-opab 4914  df-id 5226  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-iota 6067  df-fun 6106  df-fv 6112  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-xr 10366  df-ico 12402
This theorem is referenced by:  elicod  12445  icogelb  12446  lbico1  12449  elico2  12458  icodisj  12521  ico01fl0  12847  addmodid  12945  leordtvallem2  21233  pnfnei  21242  mnfnei  21243  metustexhalf  22578  blval2  22584  metuel2  22587  iscfil2  23281  eliccelico  29872  elicoelioo  29873  xrdifh  29875  fsumrp0cl  30026  xrge0iifcnv  30310  esumpcvgval  30471  dnizeq0  32787  relowlssretop  33529  tan2h  33716  iocinico  38298  rfcnpre3  39687  icoltub  40216  icoiccdif  40232  iccelpart  41945  icceuelpart  41948  bgoldbtbndlem1  42269  bgoldbtbndlem2  42270  bgoldbtbndlem3  42271  bgoldbtbnd  42273
  Copyright terms: Public domain W3C validator