MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elico1 Structured version   Visualization version   GIF version

Theorem elico1 13371
Description: Membership in a closed-below, open-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
elico1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))

Proof of Theorem elico1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 13334 . 2 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
21elixx1 13337 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wcel 2106   class class class wbr 5148  (class class class)co 7411  *cxr 11251   < clt 11252  cle 11253  [,)cico 13330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-xr 11256  df-ico 13334
This theorem is referenced by:  elicod  13378  icogelb  13379  lbico1  13382  elico2  13392  icodisj  13457  ico01fl0  13788  addmodid  13888  leordtvallem2  22935  pnfnei  22944  mnfnei  22945  blval2  24291  metuel2  24294  iscfil2  25007  eliccelico  32243  elicoelioo  32244  xrdifh  32246  fsumrp0cl  32451  ply1degltel  32928  ply1degleel  32929  ply1degltdimlem  32983  xrge0iifcnv  33199  esumpcvgval  33362  dnizeq0  35654  relowlssretop  36547  tan2h  36783  iocinico  42263  rfcnpre3  44019  icoltub  44520  icoiccdif  44536  iccelpart  46400  icceuelpart  46403  bgoldbtbndlem1  46772  bgoldbtbndlem2  46773  bgoldbtbndlem3  46774  bgoldbtbnd  46776
  Copyright terms: Public domain W3C validator