![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elico1 | Structured version Visualization version GIF version |
Description: Membership in a closed-below, open-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
elico1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ico 13354 | . 2 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
2 | 1 | elixx1 13357 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2099 class class class wbr 5142 (class class class)co 7414 ℝ*cxr 11269 < clt 11270 ≤ cle 11271 [,)cico 13350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-xr 11274 df-ico 13354 |
This theorem is referenced by: elicod 13398 icogelb 13399 lbico1 13402 elico2 13412 icodisj 13477 ico01fl0 13808 addmodid 13908 leordtvallem2 23102 pnfnei 23111 mnfnei 23112 blval2 24458 metuel2 24461 iscfil2 25181 eliccelico 32529 elicoelioo 32530 xrdifh 32532 fsumrp0cl 32733 ply1degltel 33197 ply1degleel 33198 ply1degltdimlem 33252 xrge0iifcnv 33470 esumpcvgval 33633 dnizeq0 35886 relowlssretop 36778 tan2h 37020 iocinico 42563 rfcnpre3 44318 icoltub 44816 icoiccdif 44832 iccelpart 46696 icceuelpart 46699 bgoldbtbndlem1 47068 bgoldbtbndlem2 47069 bgoldbtbndlem3 47070 bgoldbtbnd 47072 |
Copyright terms: Public domain | W3C validator |