| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elico1 | Structured version Visualization version GIF version | ||
| Description: Membership in a closed-below, open-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| elico1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ico 13319 | . 2 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 2 | 1 | elixx1 13322 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 [,)cico 13315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-xr 11219 df-ico 13319 |
| This theorem is referenced by: elicod 13363 icogelb 13364 lbico1 13368 elico2 13378 icodisj 13444 ico01fl0 13788 addmodid 13891 leordtvallem2 23105 pnfnei 23114 mnfnei 23115 blval2 24457 metuel2 24460 iscfil2 25173 eliccelico 32707 elicoelioo 32708 xrdifh 32710 fsumrp0cl 32969 ply1degltel 33567 ply1degleel 33568 ply1degltdimlem 33625 xrge0iifcnv 33930 esumpcvgval 34075 dnizeq0 36470 relowlssretop 37358 tan2h 37613 iocinico 43208 rfcnpre3 45034 icoltub 45513 icoiccdif 45529 iccelpart 47438 icceuelpart 47441 bgoldbtbndlem1 47810 bgoldbtbndlem2 47811 bgoldbtbndlem3 47812 bgoldbtbnd 47814 |
| Copyright terms: Public domain | W3C validator |