MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntleml Structured version   Visualization version   GIF version

Theorem pntleml 27673
Description: Lemma for pnt 27676. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem3.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem3.a (𝜑𝐴 ∈ ℝ+)
pntlem3.A (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntlemp.b (𝜑𝐵 ∈ ℝ+)
pntlemp.l (𝜑𝐿 ∈ (0(,)1))
pntlemp.d 𝐷 = (𝐴 + 1)
pntlemp.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlemp.K (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
Assertion
Ref Expression
pntleml (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑒,𝑎,𝑘,𝑢,𝑥,𝑦,𝑧,𝐷   𝑦,𝐹,𝑧   𝑅,𝑒,𝑘,𝑢,𝑥,𝑦,𝑧   𝑒,𝐿,𝑘,𝑢,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦   𝐵,𝑒,𝑘,𝑥,𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑢,𝑒,𝑘,𝑎)   𝐴(𝑢,𝑒,𝑘,𝑎)   𝐵(𝑢,𝑎)   𝑅(𝑎)   𝐹(𝑥,𝑢,𝑒,𝑘,𝑎)   𝐿(𝑎)

Proof of Theorem pntleml
Dummy variables 𝑠 𝑟 𝑡 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntlem3.r . 2 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem3.a . 2 (𝜑𝐴 ∈ ℝ+)
3 pntlem3.A . 2 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
4 eqid 2740 . 2 {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡} = {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}
5 pntlemp.b . . . 4 (𝜑𝐵 ∈ ℝ+)
6 pntlemp.l . . . 4 (𝜑𝐿 ∈ (0(,)1))
7 pntlemp.d . . . 4 𝐷 = (𝐴 + 1)
8 pntlemp.f . . . 4 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
91, 2, 5, 6, 7, 8pntlemd 27656 . . 3 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
109simp3d 1144 . 2 (𝜑𝐹 ∈ ℝ+)
11 0m0e0 12413 . . . . 5 (0 − 0) = 0
12 simpr 484 . . . . . 6 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → 𝑟 = 0)
1312oveq1d 7463 . . . . . . . . 9 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟↑3) = (0↑3))
14 3nn 12372 . . . . . . . . . 10 3 ∈ ℕ
15 0exp 14148 . . . . . . . . . 10 (3 ∈ ℕ → (0↑3) = 0)
1614, 15ax-mp 5 . . . . . . . . 9 (0↑3) = 0
1713, 16eqtrdi 2796 . . . . . . . 8 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟↑3) = 0)
1817oveq2d 7464 . . . . . . 7 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝐹 · (𝑟↑3)) = (𝐹 · 0))
1910rpcnd 13101 . . . . . . . . 9 (𝜑𝐹 ∈ ℂ)
2019mul01d 11489 . . . . . . . 8 (𝜑 → (𝐹 · 0) = 0)
2120ad2antrr 725 . . . . . . 7 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝐹 · 0) = 0)
2218, 21eqtrd 2780 . . . . . 6 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝐹 · (𝑟↑3)) = 0)
2312, 22oveq12d 7466 . . . . 5 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟 − (𝐹 · (𝑟↑3))) = (0 − 0))
2411, 23, 123eqtr4a 2806 . . . 4 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟 − (𝐹 · (𝑟↑3))) = 𝑟)
25 simplr 768 . . . 4 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → 𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
2624, 25eqeltrd 2844 . . 3 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
27 oveq1 7455 . . . . . . . . . . 11 (𝑦 = 𝑠 → (𝑦[,)+∞) = (𝑠[,)+∞))
2827raleqdv 3334 . . . . . . . . . 10 (𝑦 = 𝑠 → (∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 ↔ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
2928cbvrexvw 3244 . . . . . . . . 9 (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 ↔ ∃𝑠 ∈ ℝ+𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)
30 simplrr 777 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ∈ (0[,]𝐴))
31 0re 11292 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
322ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐴 ∈ ℝ+)
3332rpred 13099 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐴 ∈ ℝ)
34 elicc2 13472 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑟 ∈ (0[,]𝐴) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟𝑟𝐴)))
3531, 33, 34sylancr 586 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 ∈ (0[,]𝐴) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟𝑟𝐴)))
3630, 35mpbid 232 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟𝑟𝐴))
3736simp1d 1142 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ∈ ℝ)
3810ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐹 ∈ ℝ+)
3936simp2d 1143 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 ≤ 𝑟)
40 simplrl 776 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ≠ 0)
4137, 39, 40ne0gt0d 11427 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 < 𝑟)
4237, 41elrpd 13096 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ∈ ℝ+)
43 3z 12676 . . . . . . . . . . . . . . . 16 3 ∈ ℤ
44 rpexpcl 14131 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ ℝ+ ∧ 3 ∈ ℤ) → (𝑟↑3) ∈ ℝ+)
4542, 43, 44sylancl 585 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟↑3) ∈ ℝ+)
4638, 45rpmulcld 13115 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝐹 · (𝑟↑3)) ∈ ℝ+)
4746rpred 13099 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝐹 · (𝑟↑3)) ∈ ℝ)
4837, 47resubcld 11718 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ)
493ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
505ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐵 ∈ ℝ+)
516ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐿 ∈ (0(,)1))
52 pntlemp.K . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
5352ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
5436simp3d 1144 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟𝐴)
55 eqid 2740 . . . . . . . . . . . . . 14 (𝑟 / 𝐷) = (𝑟 / 𝐷)
56 eqid 2740 . . . . . . . . . . . . . 14 (exp‘(𝐵 / (𝑟 / 𝐷))) = (exp‘(𝐵 / (𝑟 / 𝐷)))
57 simprl 770 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑠 ∈ ℝ+)
58 1rp 13061 . . . . . . . . . . . . . . . 16 1 ∈ ℝ+
59 rpaddcl 13079 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝑠 + 1) ∈ ℝ+)
6057, 58, 59sylancl 585 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑠 + 1) ∈ ℝ+)
6157rpge0d 13103 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 ≤ 𝑠)
62 1re 11290 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
6357rpred 13099 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑠 ∈ ℝ)
64 addge02 11801 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (0 ≤ 𝑠 ↔ 1 ≤ (𝑠 + 1)))
6562, 63, 64sylancr 586 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (0 ≤ 𝑠 ↔ 1 ≤ (𝑠 + 1)))
6661, 65mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 1 ≤ (𝑠 + 1))
6760, 66jca 511 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ((𝑠 + 1) ∈ ℝ+ ∧ 1 ≤ (𝑠 + 1)))
6857rpxrd 13100 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑠 ∈ ℝ*)
6963lep1d 12226 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑠 ≤ (𝑠 + 1))
70 df-ico 13413 . . . . . . . . . . . . . . . . 17 [,) = (𝑡 ∈ ℝ*, 𝑟 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑡𝑤𝑤 < 𝑟)})
71 xrletr 13220 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℝ* ∧ (𝑠 + 1) ∈ ℝ*𝑣 ∈ ℝ*) → ((𝑠 ≤ (𝑠 + 1) ∧ (𝑠 + 1) ≤ 𝑣) → 𝑠𝑣))
7270, 70, 71ixxss1 13425 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℝ*𝑠 ≤ (𝑠 + 1)) → ((𝑠 + 1)[,)+∞) ⊆ (𝑠[,)+∞))
7368, 69, 72syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ((𝑠 + 1)[,)+∞) ⊆ (𝑠[,)+∞))
74 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)
75 ssralv 4077 . . . . . . . . . . . . . . 15 (((𝑠 + 1)[,)+∞) ⊆ (𝑠[,)+∞) → (∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 → ∀𝑧 ∈ ((𝑠 + 1)[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
7673, 74, 75sylc 65 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∀𝑧 ∈ ((𝑠 + 1)[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)
771, 32, 49, 50, 51, 7, 8, 53, 42, 54, 55, 56, 67, 76pntlemp 27672 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))
78 rpre 13065 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℝ+𝑤 ∈ ℝ)
7978adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ)
8079leidd 11856 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → 𝑤𝑤)
81 elicopnf 13505 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℝ → (𝑤 ∈ (𝑤[,)+∞) ↔ (𝑤 ∈ ℝ ∧ 𝑤𝑤)))
8279, 81syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (𝑤 ∈ (𝑤[,)+∞) ↔ (𝑤 ∈ ℝ ∧ 𝑤𝑤)))
8379, 80, 82mpbir2and 712 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ (𝑤[,)+∞))
84 fveq2 6920 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑤 → (𝑅𝑣) = (𝑅𝑤))
85 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑤𝑣 = 𝑤)
8684, 85oveq12d 7466 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑤 → ((𝑅𝑣) / 𝑣) = ((𝑅𝑤) / 𝑤))
8786fveq2d 6924 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑤 → (abs‘((𝑅𝑣) / 𝑣)) = (abs‘((𝑅𝑤) / 𝑤)))
8887breq1d 5176 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑤 → ((abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
8988rspcv 3631 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (𝑤[,)+∞) → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
9083, 89syl 17 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
911pntrf 27625 . . . . . . . . . . . . . . . . . . . . 21 𝑅:ℝ+⟶ℝ
9291ffvelcdmi 7117 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ℝ+ → (𝑅𝑤) ∈ ℝ)
93 rerpdivcl 13087 . . . . . . . . . . . . . . . . . . . 20 (((𝑅𝑤) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → ((𝑅𝑤) / 𝑤) ∈ ℝ)
9492, 93mpancom 687 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ℝ+ → ((𝑅𝑤) / 𝑤) ∈ ℝ)
9594adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → ((𝑅𝑤) / 𝑤) ∈ ℝ)
9695recnd 11318 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → ((𝑅𝑤) / 𝑤) ∈ ℂ)
9796absge0d 15493 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → 0 ≤ (abs‘((𝑅𝑤) / 𝑤)))
9896abscld 15485 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (abs‘((𝑅𝑤) / 𝑤)) ∈ ℝ)
9948adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ)
100 letr 11384 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ (abs‘((𝑅𝑤) / 𝑤)) ∈ ℝ ∧ (𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ) → ((0 ≤ (abs‘((𝑅𝑤) / 𝑤)) ∧ (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
10131, 98, 99, 100mp3an2i 1466 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → ((0 ≤ (abs‘((𝑅𝑤) / 𝑤)) ∧ (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
10297, 101mpand 694 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → ((abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
10390, 102syld 47 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
104103rexlimdva 3161 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
10577, 104mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3))))
10646rpge0d 13103 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 ≤ (𝐹 · (𝑟↑3)))
10737, 47subge02d 11882 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (0 ≤ (𝐹 · (𝑟↑3)) ↔ (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝑟))
108106, 107mpbid 232 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝑟)
10948, 37, 33, 108, 54letrd 11447 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝐴)
110 elicc2 13472 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ↔ ((𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ ∧ 0 ≤ (𝑟 − (𝐹 · (𝑟↑3))) ∧ (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝐴)))
11131, 33, 110sylancr 586 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ↔ ((𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ ∧ 0 ≤ (𝑟 − (𝐹 · (𝑟↑3))) ∧ (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝐴)))
11248, 105, 109, 111mpbir3and 1342 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴))
113112, 77jca 511 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
114113rexlimdvaa 3162 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) → (∃𝑠 ∈ ℝ+𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))))
11529, 114biimtrid 242 . . . . . . . 8 ((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))))
116115anassrs 467 . . . . . . 7 (((𝜑𝑟 ≠ 0) ∧ 𝑟 ∈ (0[,]𝐴)) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))))
117116expimpd 453 . . . . . 6 ((𝜑𝑟 ≠ 0) → ((𝑟 ∈ (0[,]𝐴) ∧ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟) → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))))
118 breq2 5170 . . . . . . . 8 (𝑡 = 𝑟 → ((abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
119118rexralbidv 3229 . . . . . . 7 (𝑡 = 𝑟 → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
120119elrab 3708 . . . . . 6 (𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡} ↔ (𝑟 ∈ (0[,]𝐴) ∧ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
121 breq2 5170 . . . . . . . . 9 (𝑡 = (𝑟 − (𝐹 · (𝑟↑3))) → ((abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
122121rexralbidv 3229 . . . . . . . 8 (𝑡 = (𝑟 − (𝐹 · (𝑟↑3))) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
123 fveq2 6920 . . . . . . . . . . . . . 14 (𝑣 = 𝑧 → (𝑅𝑣) = (𝑅𝑧))
124 id 22 . . . . . . . . . . . . . 14 (𝑣 = 𝑧𝑣 = 𝑧)
125123, 124oveq12d 7466 . . . . . . . . . . . . 13 (𝑣 = 𝑧 → ((𝑅𝑣) / 𝑣) = ((𝑅𝑧) / 𝑧))
126125fveq2d 6924 . . . . . . . . . . . 12 (𝑣 = 𝑧 → (abs‘((𝑅𝑣) / 𝑣)) = (abs‘((𝑅𝑧) / 𝑧)))
127126breq1d 5176 . . . . . . . . . . 11 (𝑣 = 𝑧 → ((abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
128127cbvralvw 3243 . . . . . . . . . 10 (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ ∀𝑧 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))
129 oveq1 7455 . . . . . . . . . . 11 (𝑤 = 𝑦 → (𝑤[,)+∞) = (𝑦[,)+∞))
130129raleqdv 3334 . . . . . . . . . 10 (𝑤 = 𝑦 → (∀𝑧 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
131128, 130bitrid 283 . . . . . . . . 9 (𝑤 = 𝑦 → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
132131cbvrexvw 3244 . . . . . . . 8 (∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))
133122, 132bitr4di 289 . . . . . . 7 (𝑡 = (𝑟 − (𝐹 · (𝑟↑3))) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
134133elrab 3708 . . . . . 6 ((𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡} ↔ ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
135117, 120, 1343imtr4g 296 . . . . 5 ((𝜑𝑟 ≠ 0) → (𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡} → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}))
136135imp 406 . . . 4 (((𝜑𝑟 ≠ 0) ∧ 𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
137136an32s 651 . . 3 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 ≠ 0) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
13826, 137pm2.61dane 3035 . 2 ((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
1391, 2, 3, 4, 10, 138pntlem3 27671 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  wss 3976   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  3c3 12349  cz 12639  cdc 12758  +crp 13057  (,)cioo 13407  [,)cico 13409  [,]cicc 13410  cexp 14112  abscabs 15283  𝑟 crli 15531  expce 16109  ψcchp 27154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-o1 15536  df-lo1 15537  df-sum 15735  df-ef 16115  df-e 16116  df-sin 16117  df-cos 16118  df-tan 16119  df-pi 16120  df-dvds 16303  df-gcd 16541  df-prm 16719  df-pc 16884  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-ulm 26438  df-log 26616  df-cxp 26617  df-atan 26928  df-em 27054  df-cht 27158  df-vma 27159  df-chp 27160  df-ppi 27161  df-mu 27162
This theorem is referenced by:  pnt3  27674
  Copyright terms: Public domain W3C validator