MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntleml Structured version   Visualization version   GIF version

Theorem pntleml 27499
Description: Lemma for pnt 27502. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem3.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem3.a (𝜑𝐴 ∈ ℝ+)
pntlem3.A (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntlemp.b (𝜑𝐵 ∈ ℝ+)
pntlemp.l (𝜑𝐿 ∈ (0(,)1))
pntlemp.d 𝐷 = (𝐴 + 1)
pntlemp.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlemp.K (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
Assertion
Ref Expression
pntleml (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑒,𝑎,𝑘,𝑢,𝑥,𝑦,𝑧,𝐷   𝑦,𝐹,𝑧   𝑅,𝑒,𝑘,𝑢,𝑥,𝑦,𝑧   𝑒,𝐿,𝑘,𝑢,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦   𝐵,𝑒,𝑘,𝑥,𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑢,𝑒,𝑘,𝑎)   𝐴(𝑢,𝑒,𝑘,𝑎)   𝐵(𝑢,𝑎)   𝑅(𝑎)   𝐹(𝑥,𝑢,𝑒,𝑘,𝑎)   𝐿(𝑎)

Proof of Theorem pntleml
Dummy variables 𝑠 𝑟 𝑡 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntlem3.r . 2 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem3.a . 2 (𝜑𝐴 ∈ ℝ+)
3 pntlem3.A . 2 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
4 eqid 2726 . 2 {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡} = {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}
5 pntlemp.b . . . 4 (𝜑𝐵 ∈ ℝ+)
6 pntlemp.l . . . 4 (𝜑𝐿 ∈ (0(,)1))
7 pntlemp.d . . . 4 𝐷 = (𝐴 + 1)
8 pntlemp.f . . . 4 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
91, 2, 5, 6, 7, 8pntlemd 27482 . . 3 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
109simp3d 1141 . 2 (𝜑𝐹 ∈ ℝ+)
11 0m0e0 12336 . . . . 5 (0 − 0) = 0
12 simpr 484 . . . . . 6 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → 𝑟 = 0)
1312oveq1d 7420 . . . . . . . . 9 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟↑3) = (0↑3))
14 3nn 12295 . . . . . . . . . 10 3 ∈ ℕ
15 0exp 14068 . . . . . . . . . 10 (3 ∈ ℕ → (0↑3) = 0)
1614, 15ax-mp 5 . . . . . . . . 9 (0↑3) = 0
1713, 16eqtrdi 2782 . . . . . . . 8 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟↑3) = 0)
1817oveq2d 7421 . . . . . . 7 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝐹 · (𝑟↑3)) = (𝐹 · 0))
1910rpcnd 13024 . . . . . . . . 9 (𝜑𝐹 ∈ ℂ)
2019mul01d 11417 . . . . . . . 8 (𝜑 → (𝐹 · 0) = 0)
2120ad2antrr 723 . . . . . . 7 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝐹 · 0) = 0)
2218, 21eqtrd 2766 . . . . . 6 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝐹 · (𝑟↑3)) = 0)
2312, 22oveq12d 7423 . . . . 5 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟 − (𝐹 · (𝑟↑3))) = (0 − 0))
2411, 23, 123eqtr4a 2792 . . . 4 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟 − (𝐹 · (𝑟↑3))) = 𝑟)
25 simplr 766 . . . 4 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → 𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
2624, 25eqeltrd 2827 . . 3 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
27 oveq1 7412 . . . . . . . . . . 11 (𝑦 = 𝑠 → (𝑦[,)+∞) = (𝑠[,)+∞))
2827raleqdv 3319 . . . . . . . . . 10 (𝑦 = 𝑠 → (∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 ↔ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
2928cbvrexvw 3229 . . . . . . . . 9 (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 ↔ ∃𝑠 ∈ ℝ+𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)
30 simplrr 775 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ∈ (0[,]𝐴))
31 0re 11220 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
322ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐴 ∈ ℝ+)
3332rpred 13022 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐴 ∈ ℝ)
34 elicc2 13395 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑟 ∈ (0[,]𝐴) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟𝑟𝐴)))
3531, 33, 34sylancr 586 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 ∈ (0[,]𝐴) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟𝑟𝐴)))
3630, 35mpbid 231 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟𝑟𝐴))
3736simp1d 1139 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ∈ ℝ)
3810ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐹 ∈ ℝ+)
3936simp2d 1140 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 ≤ 𝑟)
40 simplrl 774 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ≠ 0)
4137, 39, 40ne0gt0d 11355 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 < 𝑟)
4237, 41elrpd 13019 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ∈ ℝ+)
43 3z 12599 . . . . . . . . . . . . . . . 16 3 ∈ ℤ
44 rpexpcl 14051 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ ℝ+ ∧ 3 ∈ ℤ) → (𝑟↑3) ∈ ℝ+)
4542, 43, 44sylancl 585 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟↑3) ∈ ℝ+)
4638, 45rpmulcld 13038 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝐹 · (𝑟↑3)) ∈ ℝ+)
4746rpred 13022 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝐹 · (𝑟↑3)) ∈ ℝ)
4837, 47resubcld 11646 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ)
493ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
505ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐵 ∈ ℝ+)
516ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐿 ∈ (0(,)1))
52 pntlemp.K . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
5352ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
5436simp3d 1141 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟𝐴)
55 eqid 2726 . . . . . . . . . . . . . 14 (𝑟 / 𝐷) = (𝑟 / 𝐷)
56 eqid 2726 . . . . . . . . . . . . . 14 (exp‘(𝐵 / (𝑟 / 𝐷))) = (exp‘(𝐵 / (𝑟 / 𝐷)))
57 simprl 768 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑠 ∈ ℝ+)
58 1rp 12984 . . . . . . . . . . . . . . . 16 1 ∈ ℝ+
59 rpaddcl 13002 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝑠 + 1) ∈ ℝ+)
6057, 58, 59sylancl 585 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑠 + 1) ∈ ℝ+)
6157rpge0d 13026 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 ≤ 𝑠)
62 1re 11218 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
6357rpred 13022 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑠 ∈ ℝ)
64 addge02 11729 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (0 ≤ 𝑠 ↔ 1 ≤ (𝑠 + 1)))
6562, 63, 64sylancr 586 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (0 ≤ 𝑠 ↔ 1 ≤ (𝑠 + 1)))
6661, 65mpbid 231 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 1 ≤ (𝑠 + 1))
6760, 66jca 511 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ((𝑠 + 1) ∈ ℝ+ ∧ 1 ≤ (𝑠 + 1)))
6857rpxrd 13023 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑠 ∈ ℝ*)
6963lep1d 12149 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑠 ≤ (𝑠 + 1))
70 df-ico 13336 . . . . . . . . . . . . . . . . 17 [,) = (𝑡 ∈ ℝ*, 𝑟 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑡𝑤𝑤 < 𝑟)})
71 xrletr 13143 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℝ* ∧ (𝑠 + 1) ∈ ℝ*𝑣 ∈ ℝ*) → ((𝑠 ≤ (𝑠 + 1) ∧ (𝑠 + 1) ≤ 𝑣) → 𝑠𝑣))
7270, 70, 71ixxss1 13348 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℝ*𝑠 ≤ (𝑠 + 1)) → ((𝑠 + 1)[,)+∞) ⊆ (𝑠[,)+∞))
7368, 69, 72syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ((𝑠 + 1)[,)+∞) ⊆ (𝑠[,)+∞))
74 simprr 770 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)
75 ssralv 4045 . . . . . . . . . . . . . . 15 (((𝑠 + 1)[,)+∞) ⊆ (𝑠[,)+∞) → (∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 → ∀𝑧 ∈ ((𝑠 + 1)[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
7673, 74, 75sylc 65 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∀𝑧 ∈ ((𝑠 + 1)[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)
771, 32, 49, 50, 51, 7, 8, 53, 42, 54, 55, 56, 67, 76pntlemp 27498 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))
78 rpre 12988 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℝ+𝑤 ∈ ℝ)
7978adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ)
8079leidd 11784 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → 𝑤𝑤)
81 elicopnf 13428 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℝ → (𝑤 ∈ (𝑤[,)+∞) ↔ (𝑤 ∈ ℝ ∧ 𝑤𝑤)))
8279, 81syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (𝑤 ∈ (𝑤[,)+∞) ↔ (𝑤 ∈ ℝ ∧ 𝑤𝑤)))
8379, 80, 82mpbir2and 710 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ (𝑤[,)+∞))
84 fveq2 6885 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑤 → (𝑅𝑣) = (𝑅𝑤))
85 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑤𝑣 = 𝑤)
8684, 85oveq12d 7423 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑤 → ((𝑅𝑣) / 𝑣) = ((𝑅𝑤) / 𝑤))
8786fveq2d 6889 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑤 → (abs‘((𝑅𝑣) / 𝑣)) = (abs‘((𝑅𝑤) / 𝑤)))
8887breq1d 5151 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑤 → ((abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
8988rspcv 3602 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (𝑤[,)+∞) → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
9083, 89syl 17 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
911pntrf 27451 . . . . . . . . . . . . . . . . . . . . 21 𝑅:ℝ+⟶ℝ
9291ffvelcdmi 7079 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ℝ+ → (𝑅𝑤) ∈ ℝ)
93 rerpdivcl 13010 . . . . . . . . . . . . . . . . . . . 20 (((𝑅𝑤) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → ((𝑅𝑤) / 𝑤) ∈ ℝ)
9492, 93mpancom 685 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ℝ+ → ((𝑅𝑤) / 𝑤) ∈ ℝ)
9594adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → ((𝑅𝑤) / 𝑤) ∈ ℝ)
9695recnd 11246 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → ((𝑅𝑤) / 𝑤) ∈ ℂ)
9796absge0d 15397 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → 0 ≤ (abs‘((𝑅𝑤) / 𝑤)))
9896abscld 15389 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (abs‘((𝑅𝑤) / 𝑤)) ∈ ℝ)
9948adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ)
100 letr 11312 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ (abs‘((𝑅𝑤) / 𝑤)) ∈ ℝ ∧ (𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ) → ((0 ≤ (abs‘((𝑅𝑤) / 𝑤)) ∧ (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
10131, 98, 99, 100mp3an2i 1462 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → ((0 ≤ (abs‘((𝑅𝑤) / 𝑤)) ∧ (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
10297, 101mpand 692 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → ((abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
10390, 102syld 47 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
104103rexlimdva 3149 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
10577, 104mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3))))
10646rpge0d 13026 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 ≤ (𝐹 · (𝑟↑3)))
10737, 47subge02d 11810 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (0 ≤ (𝐹 · (𝑟↑3)) ↔ (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝑟))
108106, 107mpbid 231 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝑟)
10948, 37, 33, 108, 54letrd 11375 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝐴)
110 elicc2 13395 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ↔ ((𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ ∧ 0 ≤ (𝑟 − (𝐹 · (𝑟↑3))) ∧ (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝐴)))
11131, 33, 110sylancr 586 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ↔ ((𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ ∧ 0 ≤ (𝑟 − (𝐹 · (𝑟↑3))) ∧ (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝐴)))
11248, 105, 109, 111mpbir3and 1339 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴))
113112, 77jca 511 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
114113rexlimdvaa 3150 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) → (∃𝑠 ∈ ℝ+𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))))
11529, 114biimtrid 241 . . . . . . . 8 ((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))))
116115anassrs 467 . . . . . . 7 (((𝜑𝑟 ≠ 0) ∧ 𝑟 ∈ (0[,]𝐴)) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))))
117116expimpd 453 . . . . . 6 ((𝜑𝑟 ≠ 0) → ((𝑟 ∈ (0[,]𝐴) ∧ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟) → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))))
118 breq2 5145 . . . . . . . 8 (𝑡 = 𝑟 → ((abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
119118rexralbidv 3214 . . . . . . 7 (𝑡 = 𝑟 → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
120119elrab 3678 . . . . . 6 (𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡} ↔ (𝑟 ∈ (0[,]𝐴) ∧ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
121 breq2 5145 . . . . . . . . 9 (𝑡 = (𝑟 − (𝐹 · (𝑟↑3))) → ((abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
122121rexralbidv 3214 . . . . . . . 8 (𝑡 = (𝑟 − (𝐹 · (𝑟↑3))) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
123 fveq2 6885 . . . . . . . . . . . . . 14 (𝑣 = 𝑧 → (𝑅𝑣) = (𝑅𝑧))
124 id 22 . . . . . . . . . . . . . 14 (𝑣 = 𝑧𝑣 = 𝑧)
125123, 124oveq12d 7423 . . . . . . . . . . . . 13 (𝑣 = 𝑧 → ((𝑅𝑣) / 𝑣) = ((𝑅𝑧) / 𝑧))
126125fveq2d 6889 . . . . . . . . . . . 12 (𝑣 = 𝑧 → (abs‘((𝑅𝑣) / 𝑣)) = (abs‘((𝑅𝑧) / 𝑧)))
127126breq1d 5151 . . . . . . . . . . 11 (𝑣 = 𝑧 → ((abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
128127cbvralvw 3228 . . . . . . . . . 10 (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ ∀𝑧 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))
129 oveq1 7412 . . . . . . . . . . 11 (𝑤 = 𝑦 → (𝑤[,)+∞) = (𝑦[,)+∞))
130129raleqdv 3319 . . . . . . . . . 10 (𝑤 = 𝑦 → (∀𝑧 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
131128, 130bitrid 283 . . . . . . . . 9 (𝑤 = 𝑦 → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
132131cbvrexvw 3229 . . . . . . . 8 (∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))
133122, 132bitr4di 289 . . . . . . 7 (𝑡 = (𝑟 − (𝐹 · (𝑟↑3))) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
134133elrab 3678 . . . . . 6 ((𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡} ↔ ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
135117, 120, 1343imtr4g 296 . . . . 5 ((𝜑𝑟 ≠ 0) → (𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡} → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}))
136135imp 406 . . . 4 (((𝜑𝑟 ≠ 0) ∧ 𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
137136an32s 649 . . 3 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 ≠ 0) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
13826, 137pm2.61dane 3023 . 2 ((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
1391, 2, 3, 4, 10, 138pntlem3 27497 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2934  wral 3055  wrex 3064  {crab 3426  wss 3943   class class class wbr 5141  cmpt 5224  cfv 6537  (class class class)co 7405  cr 11111  0cc0 11112  1c1 11113   + caddc 11115   · cmul 11117  +∞cpnf 11249  *cxr 11251   < clt 11252  cle 11253  cmin 11448   / cdiv 11875  cn 12216  2c2 12271  3c3 12272  cz 12562  cdc 12681  +crp 12980  (,)cioo 13330  [,)cico 13332  [,]cicc 13333  cexp 14032  abscabs 15187  𝑟 crli 15435  expce 16011  ψcchp 26980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-disj 5107  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7667  df-om 7853  df-1st 7974  df-2nd 7975  df-supp 8147  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-2o 8468  df-oadd 8471  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-xnn0 12549  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12981  df-xneg 13098  df-xadd 13099  df-xmul 13100  df-ioo 13334  df-ioc 13335  df-ico 13336  df-icc 13337  df-fz 13491  df-fzo 13634  df-fl 13763  df-mod 13841  df-seq 13973  df-exp 14033  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15020  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-limsup 15421  df-clim 15438  df-rlim 15439  df-o1 15440  df-lo1 15441  df-sum 15639  df-ef 16017  df-e 16018  df-sin 16019  df-cos 16020  df-tan 16021  df-pi 16022  df-dvds 16205  df-gcd 16443  df-prm 16616  df-pc 16779  df-struct 17089  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-mulr 17220  df-starv 17221  df-sca 17222  df-vsca 17223  df-ip 17224  df-tset 17225  df-ple 17226  df-ds 17228  df-unif 17229  df-hom 17230  df-cco 17231  df-rest 17377  df-topn 17378  df-0g 17396  df-gsum 17397  df-topgen 17398  df-pt 17399  df-prds 17402  df-xrs 17457  df-qtop 17462  df-imas 17463  df-xps 17465  df-mre 17539  df-mrc 17540  df-acs 17542  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18714  df-mulg 18996  df-cntz 19233  df-cmn 19702  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22751  df-topon 22768  df-topsp 22790  df-bases 22804  df-cld 22878  df-ntr 22879  df-cls 22880  df-nei 22957  df-lp 22995  df-perf 22996  df-cn 23086  df-cnp 23087  df-haus 23174  df-cmp 23246  df-tx 23421  df-hmeo 23614  df-fil 23705  df-fm 23797  df-flim 23798  df-flf 23799  df-xms 24181  df-ms 24182  df-tms 24183  df-cncf 24753  df-limc 25750  df-dv 25751  df-ulm 26268  df-log 26445  df-cxp 26446  df-atan 26754  df-em 26880  df-cht 26984  df-vma 26985  df-chp 26986  df-ppi 26987  df-mu 26988
This theorem is referenced by:  pnt3  27500
  Copyright terms: Public domain W3C validator