MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntleml Structured version   Visualization version   GIF version

Theorem pntleml 27522
Description: Lemma for pnt 27525. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem3.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem3.a (𝜑𝐴 ∈ ℝ+)
pntlem3.A (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntlemp.b (𝜑𝐵 ∈ ℝ+)
pntlemp.l (𝜑𝐿 ∈ (0(,)1))
pntlemp.d 𝐷 = (𝐴 + 1)
pntlemp.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlemp.K (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
Assertion
Ref Expression
pntleml (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑒,𝑎,𝑘,𝑢,𝑥,𝑦,𝑧,𝐷   𝑦,𝐹,𝑧   𝑅,𝑒,𝑘,𝑢,𝑥,𝑦,𝑧   𝑒,𝐿,𝑘,𝑢,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦   𝐵,𝑒,𝑘,𝑥,𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑢,𝑒,𝑘,𝑎)   𝐴(𝑢,𝑒,𝑘,𝑎)   𝐵(𝑢,𝑎)   𝑅(𝑎)   𝐹(𝑥,𝑢,𝑒,𝑘,𝑎)   𝐿(𝑎)

Proof of Theorem pntleml
Dummy variables 𝑠 𝑟 𝑡 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntlem3.r . 2 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem3.a . 2 (𝜑𝐴 ∈ ℝ+)
3 pntlem3.A . 2 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
4 eqid 2729 . 2 {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡} = {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}
5 pntlemp.b . . . 4 (𝜑𝐵 ∈ ℝ+)
6 pntlemp.l . . . 4 (𝜑𝐿 ∈ (0(,)1))
7 pntlemp.d . . . 4 𝐷 = (𝐴 + 1)
8 pntlemp.f . . . 4 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
91, 2, 5, 6, 7, 8pntlemd 27505 . . 3 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
109simp3d 1144 . 2 (𝜑𝐹 ∈ ℝ+)
11 0m0e0 12301 . . . . 5 (0 − 0) = 0
12 simpr 484 . . . . . 6 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → 𝑟 = 0)
1312oveq1d 7402 . . . . . . . . 9 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟↑3) = (0↑3))
14 3nn 12265 . . . . . . . . . 10 3 ∈ ℕ
15 0exp 14062 . . . . . . . . . 10 (3 ∈ ℕ → (0↑3) = 0)
1614, 15ax-mp 5 . . . . . . . . 9 (0↑3) = 0
1713, 16eqtrdi 2780 . . . . . . . 8 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟↑3) = 0)
1817oveq2d 7403 . . . . . . 7 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝐹 · (𝑟↑3)) = (𝐹 · 0))
1910rpcnd 12997 . . . . . . . . 9 (𝜑𝐹 ∈ ℂ)
2019mul01d 11373 . . . . . . . 8 (𝜑 → (𝐹 · 0) = 0)
2120ad2antrr 726 . . . . . . 7 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝐹 · 0) = 0)
2218, 21eqtrd 2764 . . . . . 6 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝐹 · (𝑟↑3)) = 0)
2312, 22oveq12d 7405 . . . . 5 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟 − (𝐹 · (𝑟↑3))) = (0 − 0))
2411, 23, 123eqtr4a 2790 . . . 4 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟 − (𝐹 · (𝑟↑3))) = 𝑟)
25 simplr 768 . . . 4 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → 𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
2624, 25eqeltrd 2828 . . 3 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
27 oveq1 7394 . . . . . . . . . . 11 (𝑦 = 𝑠 → (𝑦[,)+∞) = (𝑠[,)+∞))
2827raleqdv 3299 . . . . . . . . . 10 (𝑦 = 𝑠 → (∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 ↔ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
2928cbvrexvw 3216 . . . . . . . . 9 (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 ↔ ∃𝑠 ∈ ℝ+𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)
30 simplrr 777 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ∈ (0[,]𝐴))
31 0re 11176 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
322ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐴 ∈ ℝ+)
3332rpred 12995 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐴 ∈ ℝ)
34 elicc2 13372 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑟 ∈ (0[,]𝐴) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟𝑟𝐴)))
3531, 33, 34sylancr 587 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 ∈ (0[,]𝐴) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟𝑟𝐴)))
3630, 35mpbid 232 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟𝑟𝐴))
3736simp1d 1142 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ∈ ℝ)
3810ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐹 ∈ ℝ+)
3936simp2d 1143 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 ≤ 𝑟)
40 simplrl 776 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ≠ 0)
4137, 39, 40ne0gt0d 11311 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 < 𝑟)
4237, 41elrpd 12992 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ∈ ℝ+)
43 3z 12566 . . . . . . . . . . . . . . . 16 3 ∈ ℤ
44 rpexpcl 14045 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ ℝ+ ∧ 3 ∈ ℤ) → (𝑟↑3) ∈ ℝ+)
4542, 43, 44sylancl 586 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟↑3) ∈ ℝ+)
4638, 45rpmulcld 13011 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝐹 · (𝑟↑3)) ∈ ℝ+)
4746rpred 12995 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝐹 · (𝑟↑3)) ∈ ℝ)
4837, 47resubcld 11606 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ)
493ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
505ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐵 ∈ ℝ+)
516ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐿 ∈ (0(,)1))
52 pntlemp.K . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
5352ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
5436simp3d 1144 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟𝐴)
55 eqid 2729 . . . . . . . . . . . . . 14 (𝑟 / 𝐷) = (𝑟 / 𝐷)
56 eqid 2729 . . . . . . . . . . . . . 14 (exp‘(𝐵 / (𝑟 / 𝐷))) = (exp‘(𝐵 / (𝑟 / 𝐷)))
57 simprl 770 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑠 ∈ ℝ+)
58 1rp 12955 . . . . . . . . . . . . . . . 16 1 ∈ ℝ+
59 rpaddcl 12975 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝑠 + 1) ∈ ℝ+)
6057, 58, 59sylancl 586 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑠 + 1) ∈ ℝ+)
6157rpge0d 12999 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 ≤ 𝑠)
62 1re 11174 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
6357rpred 12995 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑠 ∈ ℝ)
64 addge02 11689 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (0 ≤ 𝑠 ↔ 1 ≤ (𝑠 + 1)))
6562, 63, 64sylancr 587 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (0 ≤ 𝑠 ↔ 1 ≤ (𝑠 + 1)))
6661, 65mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 1 ≤ (𝑠 + 1))
6760, 66jca 511 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ((𝑠 + 1) ∈ ℝ+ ∧ 1 ≤ (𝑠 + 1)))
6857rpxrd 12996 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑠 ∈ ℝ*)
6963lep1d 12114 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑠 ≤ (𝑠 + 1))
70 df-ico 13312 . . . . . . . . . . . . . . . . 17 [,) = (𝑡 ∈ ℝ*, 𝑟 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑡𝑤𝑤 < 𝑟)})
71 xrletr 13118 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℝ* ∧ (𝑠 + 1) ∈ ℝ*𝑣 ∈ ℝ*) → ((𝑠 ≤ (𝑠 + 1) ∧ (𝑠 + 1) ≤ 𝑣) → 𝑠𝑣))
7270, 70, 71ixxss1 13324 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℝ*𝑠 ≤ (𝑠 + 1)) → ((𝑠 + 1)[,)+∞) ⊆ (𝑠[,)+∞))
7368, 69, 72syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ((𝑠 + 1)[,)+∞) ⊆ (𝑠[,)+∞))
74 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)
75 ssralv 4015 . . . . . . . . . . . . . . 15 (((𝑠 + 1)[,)+∞) ⊆ (𝑠[,)+∞) → (∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 → ∀𝑧 ∈ ((𝑠 + 1)[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
7673, 74, 75sylc 65 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∀𝑧 ∈ ((𝑠 + 1)[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)
771, 32, 49, 50, 51, 7, 8, 53, 42, 54, 55, 56, 67, 76pntlemp 27521 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))
78 rpre 12960 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℝ+𝑤 ∈ ℝ)
7978adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ)
8079leidd 11744 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → 𝑤𝑤)
81 elicopnf 13406 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℝ → (𝑤 ∈ (𝑤[,)+∞) ↔ (𝑤 ∈ ℝ ∧ 𝑤𝑤)))
8279, 81syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (𝑤 ∈ (𝑤[,)+∞) ↔ (𝑤 ∈ ℝ ∧ 𝑤𝑤)))
8379, 80, 82mpbir2and 713 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ (𝑤[,)+∞))
84 fveq2 6858 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑤 → (𝑅𝑣) = (𝑅𝑤))
85 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑤𝑣 = 𝑤)
8684, 85oveq12d 7405 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑤 → ((𝑅𝑣) / 𝑣) = ((𝑅𝑤) / 𝑤))
8786fveq2d 6862 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑤 → (abs‘((𝑅𝑣) / 𝑣)) = (abs‘((𝑅𝑤) / 𝑤)))
8887breq1d 5117 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑤 → ((abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
8988rspcv 3584 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (𝑤[,)+∞) → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
9083, 89syl 17 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
911pntrf 27474 . . . . . . . . . . . . . . . . . . . . 21 𝑅:ℝ+⟶ℝ
9291ffvelcdmi 7055 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ℝ+ → (𝑅𝑤) ∈ ℝ)
93 rerpdivcl 12983 . . . . . . . . . . . . . . . . . . . 20 (((𝑅𝑤) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → ((𝑅𝑤) / 𝑤) ∈ ℝ)
9492, 93mpancom 688 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ℝ+ → ((𝑅𝑤) / 𝑤) ∈ ℝ)
9594adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → ((𝑅𝑤) / 𝑤) ∈ ℝ)
9695recnd 11202 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → ((𝑅𝑤) / 𝑤) ∈ ℂ)
9796absge0d 15413 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → 0 ≤ (abs‘((𝑅𝑤) / 𝑤)))
9896abscld 15405 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (abs‘((𝑅𝑤) / 𝑤)) ∈ ℝ)
9948adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ)
100 letr 11268 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ (abs‘((𝑅𝑤) / 𝑤)) ∈ ℝ ∧ (𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ) → ((0 ≤ (abs‘((𝑅𝑤) / 𝑤)) ∧ (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
10131, 98, 99, 100mp3an2i 1468 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → ((0 ≤ (abs‘((𝑅𝑤) / 𝑤)) ∧ (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
10297, 101mpand 695 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → ((abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
10390, 102syld 47 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
104103rexlimdva 3134 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
10577, 104mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3))))
10646rpge0d 12999 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 ≤ (𝐹 · (𝑟↑3)))
10737, 47subge02d 11770 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (0 ≤ (𝐹 · (𝑟↑3)) ↔ (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝑟))
108106, 107mpbid 232 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝑟)
10948, 37, 33, 108, 54letrd 11331 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝐴)
110 elicc2 13372 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ↔ ((𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ ∧ 0 ≤ (𝑟 − (𝐹 · (𝑟↑3))) ∧ (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝐴)))
11131, 33, 110sylancr 587 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ↔ ((𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ ∧ 0 ≤ (𝑟 − (𝐹 · (𝑟↑3))) ∧ (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝐴)))
11248, 105, 109, 111mpbir3and 1343 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴))
113112, 77jca 511 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
114113rexlimdvaa 3135 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) → (∃𝑠 ∈ ℝ+𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))))
11529, 114biimtrid 242 . . . . . . . 8 ((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))))
116115anassrs 467 . . . . . . 7 (((𝜑𝑟 ≠ 0) ∧ 𝑟 ∈ (0[,]𝐴)) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))))
117116expimpd 453 . . . . . 6 ((𝜑𝑟 ≠ 0) → ((𝑟 ∈ (0[,]𝐴) ∧ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟) → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))))
118 breq2 5111 . . . . . . . 8 (𝑡 = 𝑟 → ((abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
119118rexralbidv 3203 . . . . . . 7 (𝑡 = 𝑟 → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
120119elrab 3659 . . . . . 6 (𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡} ↔ (𝑟 ∈ (0[,]𝐴) ∧ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
121 breq2 5111 . . . . . . . . 9 (𝑡 = (𝑟 − (𝐹 · (𝑟↑3))) → ((abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
122121rexralbidv 3203 . . . . . . . 8 (𝑡 = (𝑟 − (𝐹 · (𝑟↑3))) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
123 fveq2 6858 . . . . . . . . . . . . . 14 (𝑣 = 𝑧 → (𝑅𝑣) = (𝑅𝑧))
124 id 22 . . . . . . . . . . . . . 14 (𝑣 = 𝑧𝑣 = 𝑧)
125123, 124oveq12d 7405 . . . . . . . . . . . . 13 (𝑣 = 𝑧 → ((𝑅𝑣) / 𝑣) = ((𝑅𝑧) / 𝑧))
126125fveq2d 6862 . . . . . . . . . . . 12 (𝑣 = 𝑧 → (abs‘((𝑅𝑣) / 𝑣)) = (abs‘((𝑅𝑧) / 𝑧)))
127126breq1d 5117 . . . . . . . . . . 11 (𝑣 = 𝑧 → ((abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
128127cbvralvw 3215 . . . . . . . . . 10 (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ ∀𝑧 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))
129 oveq1 7394 . . . . . . . . . . 11 (𝑤 = 𝑦 → (𝑤[,)+∞) = (𝑦[,)+∞))
130129raleqdv 3299 . . . . . . . . . 10 (𝑤 = 𝑦 → (∀𝑧 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
131128, 130bitrid 283 . . . . . . . . 9 (𝑤 = 𝑦 → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
132131cbvrexvw 3216 . . . . . . . 8 (∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))
133122, 132bitr4di 289 . . . . . . 7 (𝑡 = (𝑟 − (𝐹 · (𝑟↑3))) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
134133elrab 3659 . . . . . 6 ((𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡} ↔ ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
135117, 120, 1343imtr4g 296 . . . . 5 ((𝜑𝑟 ≠ 0) → (𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡} → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}))
136135imp 406 . . . 4 (((𝜑𝑟 ≠ 0) ∧ 𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
137136an32s 652 . . 3 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 ≠ 0) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
13826, 137pm2.61dane 3012 . 2 ((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
1391, 2, 3, 4, 10, 138pntlem3 27520 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  wss 3914   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  cz 12529  cdc 12649  +crp 12951  (,)cioo 13306  [,)cico 13308  [,]cicc 13309  cexp 14026  abscabs 15200  𝑟 crli 15451  expce 16027  ψcchp 27003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-o1 15456  df-lo1 15457  df-sum 15653  df-ef 16033  df-e 16034  df-sin 16035  df-cos 16036  df-tan 16037  df-pi 16038  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-ulm 26286  df-log 26465  df-cxp 26466  df-atan 26777  df-em 26903  df-cht 27007  df-vma 27008  df-chp 27009  df-ppi 27010  df-mu 27011
This theorem is referenced by:  pnt3  27523
  Copyright terms: Public domain W3C validator