| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | pntlem3.r | . 2
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦
((ψ‘𝑎) −
𝑎)) | 
| 2 |  | pntlem3.a | . 2
⊢ (𝜑 → 𝐴 ∈
ℝ+) | 
| 3 |  | pntlem3.A | . 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+
(abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) | 
| 4 |  | eqid 2736 | . 2
⊢ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡} = {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡} | 
| 5 |  | pntlemp.b | . . . 4
⊢ (𝜑 → 𝐵 ∈
ℝ+) | 
| 6 |  | pntlemp.l | . . . 4
⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | 
| 7 |  | pntlemp.d | . . . 4
⊢ 𝐷 = (𝐴 + 1) | 
| 8 |  | pntlemp.f | . . . 4
⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | 
| 9 | 1, 2, 5, 6, 7, 8 | pntlemd 27639 | . . 3
⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+
∧ 𝐹 ∈
ℝ+)) | 
| 10 | 9 | simp3d 1144 | . 2
⊢ (𝜑 → 𝐹 ∈
ℝ+) | 
| 11 |  | 0m0e0 12387 | . . . . 5
⊢ (0
− 0) = 0 | 
| 12 |  | simpr 484 | . . . . . 6
⊢ (((𝜑 ∧ 𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → 𝑟 = 0) | 
| 13 | 12 | oveq1d 7447 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟↑3) = (0↑3)) | 
| 14 |  | 3nn 12346 | . . . . . . . . . 10
⊢ 3 ∈
ℕ | 
| 15 |  | 0exp 14139 | . . . . . . . . . 10
⊢ (3 ∈
ℕ → (0↑3) = 0) | 
| 16 | 14, 15 | ax-mp 5 | . . . . . . . . 9
⊢
(0↑3) = 0 | 
| 17 | 13, 16 | eqtrdi 2792 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟↑3) = 0) | 
| 18 | 17 | oveq2d 7448 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝐹 · (𝑟↑3)) = (𝐹 · 0)) | 
| 19 | 10 | rpcnd 13080 | . . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ ℂ) | 
| 20 | 19 | mul01d 11461 | . . . . . . . 8
⊢ (𝜑 → (𝐹 · 0) = 0) | 
| 21 | 20 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝐹 · 0) = 0) | 
| 22 | 18, 21 | eqtrd 2776 | . . . . . 6
⊢ (((𝜑 ∧ 𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝐹 · (𝑟↑3)) = 0) | 
| 23 | 12, 22 | oveq12d 7450 | . . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟 − (𝐹 · (𝑟↑3))) = (0 − 0)) | 
| 24 | 11, 23, 12 | 3eqtr4a 2802 | . . . 4
⊢ (((𝜑 ∧ 𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟 − (𝐹 · (𝑟↑3))) = 𝑟) | 
| 25 |  | simplr 768 | . . . 4
⊢ (((𝜑 ∧ 𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → 𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡}) | 
| 26 | 24, 25 | eqeltrd 2840 | . . 3
⊢ (((𝜑 ∧ 𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡}) | 
| 27 |  | oveq1 7439 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑠 → (𝑦[,)+∞) = (𝑠[,)+∞)) | 
| 28 | 27 | raleqdv 3325 | . . . . . . . . . 10
⊢ (𝑦 = 𝑠 → (∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟 ↔ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) | 
| 29 | 28 | cbvrexvw 3237 | . . . . . . . . 9
⊢
(∃𝑦 ∈
ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟 ↔ ∃𝑠 ∈ ℝ+ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟) | 
| 30 |  | simplrr 777 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ∈ (0[,]𝐴)) | 
| 31 |  | 0re 11264 | . . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℝ | 
| 32 | 2 | ad2antrr 726 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → 𝐴 ∈
ℝ+) | 
| 33 | 32 | rpred 13078 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → 𝐴 ∈ ℝ) | 
| 34 |  | elicc2 13453 | . . . . . . . . . . . . . . . 16
⊢ ((0
∈ ℝ ∧ 𝐴
∈ ℝ) → (𝑟
∈ (0[,]𝐴) ↔
(𝑟 ∈ ℝ ∧ 0
≤ 𝑟 ∧ 𝑟 ≤ 𝐴))) | 
| 35 | 31, 33, 34 | sylancr 587 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 ∈ (0[,]𝐴) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟 ∧ 𝑟 ≤ 𝐴))) | 
| 36 | 30, 35 | mpbid 232 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟 ∧ 𝑟 ≤ 𝐴)) | 
| 37 | 36 | simp1d 1142 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ∈ ℝ) | 
| 38 | 10 | ad2antrr 726 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → 𝐹 ∈
ℝ+) | 
| 39 | 36 | simp2d 1143 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → 0 ≤ 𝑟) | 
| 40 |  | simplrl 776 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ≠ 0) | 
| 41 | 37, 39, 40 | ne0gt0d 11399 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → 0 < 𝑟) | 
| 42 | 37, 41 | elrpd 13075 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ∈ ℝ+) | 
| 43 |  | 3z 12652 | . . . . . . . . . . . . . . . 16
⊢ 3 ∈
ℤ | 
| 44 |  | rpexpcl 14122 | . . . . . . . . . . . . . . . 16
⊢ ((𝑟 ∈ ℝ+
∧ 3 ∈ ℤ) → (𝑟↑3) ∈
ℝ+) | 
| 45 | 42, 43, 44 | sylancl 586 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟↑3) ∈
ℝ+) | 
| 46 | 38, 45 | rpmulcld 13094 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → (𝐹 · (𝑟↑3)) ∈
ℝ+) | 
| 47 | 46 | rpred 13078 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → (𝐹 · (𝑟↑3)) ∈ ℝ) | 
| 48 | 37, 47 | resubcld 11692 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ) | 
| 49 | 3 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → ∀𝑥 ∈ ℝ+
(abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) | 
| 50 | 5 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → 𝐵 ∈
ℝ+) | 
| 51 | 6 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → 𝐿 ∈ (0(,)1)) | 
| 52 |  | pntlemp.K | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝑒)) | 
| 53 | 52 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝑒)) | 
| 54 | 36 | simp3d 1144 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ≤ 𝐴) | 
| 55 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢ (𝑟 / 𝐷) = (𝑟 / 𝐷) | 
| 56 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢
(exp‘(𝐵 /
(𝑟 / 𝐷))) = (exp‘(𝐵 / (𝑟 / 𝐷))) | 
| 57 |  | simprl 770 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → 𝑠 ∈ ℝ+) | 
| 58 |  | 1rp 13039 | . . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℝ+ | 
| 59 |  | rpaddcl 13058 | . . . . . . . . . . . . . . . 16
⊢ ((𝑠 ∈ ℝ+
∧ 1 ∈ ℝ+) → (𝑠 + 1) ∈
ℝ+) | 
| 60 | 57, 58, 59 | sylancl 586 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → (𝑠 + 1) ∈
ℝ+) | 
| 61 | 57 | rpge0d 13082 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → 0 ≤ 𝑠) | 
| 62 |  | 1re 11262 | . . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℝ | 
| 63 | 57 | rpred 13078 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → 𝑠 ∈ ℝ) | 
| 64 |  | addge02 11775 | . . . . . . . . . . . . . . . . 17
⊢ ((1
∈ ℝ ∧ 𝑠
∈ ℝ) → (0 ≤ 𝑠 ↔ 1 ≤ (𝑠 + 1))) | 
| 65 | 62, 63, 64 | sylancr 587 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → (0 ≤ 𝑠 ↔ 1 ≤ (𝑠 + 1))) | 
| 66 | 61, 65 | mpbid 232 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → 1 ≤ (𝑠 + 1)) | 
| 67 | 60, 66 | jca 511 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → ((𝑠 + 1) ∈ ℝ+ ∧ 1 ≤
(𝑠 + 1))) | 
| 68 | 57 | rpxrd 13079 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → 𝑠 ∈ ℝ*) | 
| 69 | 63 | lep1d 12200 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → 𝑠 ≤ (𝑠 + 1)) | 
| 70 |  | df-ico 13394 | . . . . . . . . . . . . . . . . 17
⊢ [,) =
(𝑡 ∈
ℝ*, 𝑟
∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑡 ≤ 𝑤 ∧ 𝑤 < 𝑟)}) | 
| 71 |  | xrletr 13201 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑠 ∈ ℝ*
∧ (𝑠 + 1) ∈
ℝ* ∧ 𝑣
∈ ℝ*) → ((𝑠 ≤ (𝑠 + 1) ∧ (𝑠 + 1) ≤ 𝑣) → 𝑠 ≤ 𝑣)) | 
| 72 | 70, 70, 71 | ixxss1 13406 | . . . . . . . . . . . . . . . 16
⊢ ((𝑠 ∈ ℝ*
∧ 𝑠 ≤ (𝑠 + 1)) → ((𝑠 + 1)[,)+∞) ⊆ (𝑠[,)+∞)) | 
| 73 | 68, 69, 72 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → ((𝑠 + 1)[,)+∞) ⊆ (𝑠[,)+∞)) | 
| 74 |  | simprr 772 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟) | 
| 75 |  | ssralv 4051 | . . . . . . . . . . . . . . 15
⊢ (((𝑠 + 1)[,)+∞) ⊆ (𝑠[,)+∞) →
(∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟 → ∀𝑧 ∈ ((𝑠 + 1)[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) | 
| 76 | 73, 74, 75 | sylc 65 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → ∀𝑧 ∈ ((𝑠 + 1)[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟) | 
| 77 | 1, 32, 49, 50, 51, 7, 8, 53, 42, 54, 55, 56, 67, 76 | pntlemp 27655 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))) | 
| 78 |  | rpre 13044 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ ℝ+
→ 𝑤 ∈
ℝ) | 
| 79 | 78 | adantl 481 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈
ℝ) | 
| 80 | 79 | leidd 11830 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → 𝑤 ≤ 𝑤) | 
| 81 |  | elicopnf 13486 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ ℝ → (𝑤 ∈ (𝑤[,)+∞) ↔ (𝑤 ∈ ℝ ∧ 𝑤 ≤ 𝑤))) | 
| 82 | 79, 81 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (𝑤 ∈ (𝑤[,)+∞) ↔ (𝑤 ∈ ℝ ∧ 𝑤 ≤ 𝑤))) | 
| 83 | 79, 80, 82 | mpbir2and 713 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ (𝑤[,)+∞)) | 
| 84 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 = 𝑤 → (𝑅‘𝑣) = (𝑅‘𝑤)) | 
| 85 |  | id 22 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 = 𝑤 → 𝑣 = 𝑤) | 
| 86 | 84, 85 | oveq12d 7450 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 = 𝑤 → ((𝑅‘𝑣) / 𝑣) = ((𝑅‘𝑤) / 𝑤)) | 
| 87 | 86 | fveq2d 6909 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = 𝑤 → (abs‘((𝑅‘𝑣) / 𝑣)) = (abs‘((𝑅‘𝑤) / 𝑤))) | 
| 88 | 87 | breq1d 5152 | . . . . . . . . . . . . . . . . 17
⊢ (𝑣 = 𝑤 → ((abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ (abs‘((𝑅‘𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))) | 
| 89 | 88 | rspcv 3617 | . . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ (𝑤[,)+∞) → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → (abs‘((𝑅‘𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))) | 
| 90 | 83, 89 | syl 17 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) →
(∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → (abs‘((𝑅‘𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))) | 
| 91 | 1 | pntrf 27608 | . . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑅:ℝ+⟶ℝ | 
| 92 | 91 | ffvelcdmi 7102 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ ℝ+
→ (𝑅‘𝑤) ∈
ℝ) | 
| 93 |  | rerpdivcl 13066 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅‘𝑤) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → ((𝑅‘𝑤) / 𝑤) ∈ ℝ) | 
| 94 | 92, 93 | mpancom 688 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ ℝ+
→ ((𝑅‘𝑤) / 𝑤) ∈ ℝ) | 
| 95 | 94 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → ((𝑅‘𝑤) / 𝑤) ∈ ℝ) | 
| 96 | 95 | recnd 11290 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → ((𝑅‘𝑤) / 𝑤) ∈ ℂ) | 
| 97 | 96 | absge0d 15484 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → 0 ≤
(abs‘((𝑅‘𝑤) / 𝑤))) | 
| 98 | 96 | abscld 15476 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) →
(abs‘((𝑅‘𝑤) / 𝑤)) ∈ ℝ) | 
| 99 | 48 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ) | 
| 100 |  | letr 11356 | . . . . . . . . . . . . . . . . 17
⊢ ((0
∈ ℝ ∧ (abs‘((𝑅‘𝑤) / 𝑤)) ∈ ℝ ∧ (𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ) → ((0 ≤
(abs‘((𝑅‘𝑤) / 𝑤)) ∧ (abs‘((𝑅‘𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3))))) | 
| 101 | 31, 98, 99, 100 | mp3an2i 1467 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → ((0 ≤
(abs‘((𝑅‘𝑤) / 𝑤)) ∧ (abs‘((𝑅‘𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3))))) | 
| 102 | 97, 101 | mpand 695 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) →
((abs‘((𝑅‘𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3))))) | 
| 103 | 90, 102 | syld 47 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) →
(∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3))))) | 
| 104 | 103 | rexlimdva 3154 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → (∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3))))) | 
| 105 | 77, 104 | mpd 15 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))) | 
| 106 | 46 | rpge0d 13082 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → 0 ≤ (𝐹 · (𝑟↑3))) | 
| 107 | 37, 47 | subge02d 11856 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → (0 ≤ (𝐹 · (𝑟↑3)) ↔ (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝑟)) | 
| 108 | 106, 107 | mpbid 232 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝑟) | 
| 109 | 48, 37, 33, 108, 54 | letrd 11419 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝐴) | 
| 110 |  | elicc2 13453 | . . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ 𝐴
∈ ℝ) → ((𝑟
− (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ↔ ((𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ ∧ 0 ≤ (𝑟 − (𝐹 · (𝑟↑3))) ∧ (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝐴))) | 
| 111 | 31, 33, 110 | sylancr 587 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ↔ ((𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ ∧ 0 ≤ (𝑟 − (𝐹 · (𝑟↑3))) ∧ (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝐴))) | 
| 112 | 48, 105, 109, 111 | mpbir3and 1342 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴)) | 
| 113 | 112, 77 | jca 511 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧
∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))) | 
| 114 | 113 | rexlimdvaa 3155 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) → (∃𝑠 ∈ ℝ+ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟 → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))) | 
| 115 | 29, 114 | biimtrid 242 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) → (∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟 → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))) | 
| 116 | 115 | anassrs 467 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑟 ≠ 0) ∧ 𝑟 ∈ (0[,]𝐴)) → (∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟 → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))) | 
| 117 | 116 | expimpd 453 | . . . . . 6
⊢ ((𝜑 ∧ 𝑟 ≠ 0) → ((𝑟 ∈ (0[,]𝐴) ∧ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟) → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))) | 
| 118 |  | breq2 5146 | . . . . . . . 8
⊢ (𝑡 = 𝑟 → ((abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 ↔ (abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) | 
| 119 | 118 | rexralbidv 3222 | . . . . . . 7
⊢ (𝑡 = 𝑟 → (∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 ↔ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) | 
| 120 | 119 | elrab 3691 | . . . . . 6
⊢ (𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡} ↔ (𝑟 ∈ (0[,]𝐴) ∧ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑟)) | 
| 121 |  | breq2 5146 | . . . . . . . . 9
⊢ (𝑡 = (𝑟 − (𝐹 · (𝑟↑3))) → ((abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 ↔ (abs‘((𝑅‘𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))) | 
| 122 | 121 | rexralbidv 3222 | . . . . . . . 8
⊢ (𝑡 = (𝑟 − (𝐹 · (𝑟↑3))) → (∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 ↔ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))) | 
| 123 |  | fveq2 6905 | . . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑧 → (𝑅‘𝑣) = (𝑅‘𝑧)) | 
| 124 |  | id 22 | . . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑧 → 𝑣 = 𝑧) | 
| 125 | 123, 124 | oveq12d 7450 | . . . . . . . . . . . . 13
⊢ (𝑣 = 𝑧 → ((𝑅‘𝑣) / 𝑣) = ((𝑅‘𝑧) / 𝑧)) | 
| 126 | 125 | fveq2d 6909 | . . . . . . . . . . . 12
⊢ (𝑣 = 𝑧 → (abs‘((𝑅‘𝑣) / 𝑣)) = (abs‘((𝑅‘𝑧) / 𝑧))) | 
| 127 | 126 | breq1d 5152 | . . . . . . . . . . 11
⊢ (𝑣 = 𝑧 → ((abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ (abs‘((𝑅‘𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))) | 
| 128 | 127 | cbvralvw 3236 | . . . . . . . . . 10
⊢
(∀𝑣 ∈
(𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ ∀𝑧 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))) | 
| 129 |  | oveq1 7439 | . . . . . . . . . . 11
⊢ (𝑤 = 𝑦 → (𝑤[,)+∞) = (𝑦[,)+∞)) | 
| 130 | 129 | raleqdv 3325 | . . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (∀𝑧 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))) | 
| 131 | 128, 130 | bitrid 283 | . . . . . . . . 9
⊢ (𝑤 = 𝑦 → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))) | 
| 132 | 131 | cbvrexvw 3237 | . . . . . . . 8
⊢
(∃𝑤 ∈
ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))) | 
| 133 | 122, 132 | bitr4di 289 | . . . . . . 7
⊢ (𝑡 = (𝑟 − (𝐹 · (𝑟↑3))) → (∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 ↔ ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))) | 
| 134 | 133 | elrab 3691 | . . . . . 6
⊢ ((𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡} ↔ ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))) | 
| 135 | 117, 120,
134 | 3imtr4g 296 | . . . . 5
⊢ ((𝜑 ∧ 𝑟 ≠ 0) → (𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡} → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡})) | 
| 136 | 135 | imp 406 | . . . 4
⊢ (((𝜑 ∧ 𝑟 ≠ 0) ∧ 𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡}) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡}) | 
| 137 | 136 | an32s 652 | . . 3
⊢ (((𝜑 ∧ 𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 ≠ 0) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡}) | 
| 138 | 26, 137 | pm2.61dane 3028 | . 2
⊢ ((𝜑 ∧ 𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡}) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡}) | 
| 139 | 1, 2, 3, 4, 10, 138 | pntlem3 27654 | 1
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
((ψ‘𝑥) / 𝑥)) ⇝𝑟
1) |