MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntleml Structured version   Visualization version   GIF version

Theorem pntleml 27538
Description: Lemma for pnt 27541. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem3.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem3.a (𝜑𝐴 ∈ ℝ+)
pntlem3.A (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntlemp.b (𝜑𝐵 ∈ ℝ+)
pntlemp.l (𝜑𝐿 ∈ (0(,)1))
pntlemp.d 𝐷 = (𝐴 + 1)
pntlemp.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlemp.K (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
Assertion
Ref Expression
pntleml (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑒,𝑎,𝑘,𝑢,𝑥,𝑦,𝑧,𝐷   𝑦,𝐹,𝑧   𝑅,𝑒,𝑘,𝑢,𝑥,𝑦,𝑧   𝑒,𝐿,𝑘,𝑢,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦   𝐵,𝑒,𝑘,𝑥,𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑢,𝑒,𝑘,𝑎)   𝐴(𝑢,𝑒,𝑘,𝑎)   𝐵(𝑢,𝑎)   𝑅(𝑎)   𝐹(𝑥,𝑢,𝑒,𝑘,𝑎)   𝐿(𝑎)

Proof of Theorem pntleml
Dummy variables 𝑠 𝑟 𝑡 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntlem3.r . 2 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem3.a . 2 (𝜑𝐴 ∈ ℝ+)
3 pntlem3.A . 2 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
4 eqid 2729 . 2 {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡} = {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}
5 pntlemp.b . . . 4 (𝜑𝐵 ∈ ℝ+)
6 pntlemp.l . . . 4 (𝜑𝐿 ∈ (0(,)1))
7 pntlemp.d . . . 4 𝐷 = (𝐴 + 1)
8 pntlemp.f . . . 4 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
91, 2, 5, 6, 7, 8pntlemd 27521 . . 3 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
109simp3d 1144 . 2 (𝜑𝐹 ∈ ℝ+)
11 0m0e0 12261 . . . . 5 (0 − 0) = 0
12 simpr 484 . . . . . 6 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → 𝑟 = 0)
1312oveq1d 7368 . . . . . . . . 9 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟↑3) = (0↑3))
14 3nn 12225 . . . . . . . . . 10 3 ∈ ℕ
15 0exp 14022 . . . . . . . . . 10 (3 ∈ ℕ → (0↑3) = 0)
1614, 15ax-mp 5 . . . . . . . . 9 (0↑3) = 0
1713, 16eqtrdi 2780 . . . . . . . 8 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟↑3) = 0)
1817oveq2d 7369 . . . . . . 7 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝐹 · (𝑟↑3)) = (𝐹 · 0))
1910rpcnd 12957 . . . . . . . . 9 (𝜑𝐹 ∈ ℂ)
2019mul01d 11333 . . . . . . . 8 (𝜑 → (𝐹 · 0) = 0)
2120ad2antrr 726 . . . . . . 7 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝐹 · 0) = 0)
2218, 21eqtrd 2764 . . . . . 6 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝐹 · (𝑟↑3)) = 0)
2312, 22oveq12d 7371 . . . . 5 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟 − (𝐹 · (𝑟↑3))) = (0 − 0))
2411, 23, 123eqtr4a 2790 . . . 4 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟 − (𝐹 · (𝑟↑3))) = 𝑟)
25 simplr 768 . . . 4 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → 𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
2624, 25eqeltrd 2828 . . 3 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
27 oveq1 7360 . . . . . . . . . . 11 (𝑦 = 𝑠 → (𝑦[,)+∞) = (𝑠[,)+∞))
2827raleqdv 3290 . . . . . . . . . 10 (𝑦 = 𝑠 → (∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 ↔ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
2928cbvrexvw 3208 . . . . . . . . 9 (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 ↔ ∃𝑠 ∈ ℝ+𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)
30 simplrr 777 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ∈ (0[,]𝐴))
31 0re 11136 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
322ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐴 ∈ ℝ+)
3332rpred 12955 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐴 ∈ ℝ)
34 elicc2 13332 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑟 ∈ (0[,]𝐴) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟𝑟𝐴)))
3531, 33, 34sylancr 587 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 ∈ (0[,]𝐴) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟𝑟𝐴)))
3630, 35mpbid 232 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟𝑟𝐴))
3736simp1d 1142 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ∈ ℝ)
3810ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐹 ∈ ℝ+)
3936simp2d 1143 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 ≤ 𝑟)
40 simplrl 776 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ≠ 0)
4137, 39, 40ne0gt0d 11271 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 < 𝑟)
4237, 41elrpd 12952 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ∈ ℝ+)
43 3z 12526 . . . . . . . . . . . . . . . 16 3 ∈ ℤ
44 rpexpcl 14005 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ ℝ+ ∧ 3 ∈ ℤ) → (𝑟↑3) ∈ ℝ+)
4542, 43, 44sylancl 586 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟↑3) ∈ ℝ+)
4638, 45rpmulcld 12971 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝐹 · (𝑟↑3)) ∈ ℝ+)
4746rpred 12955 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝐹 · (𝑟↑3)) ∈ ℝ)
4837, 47resubcld 11566 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ)
493ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
505ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐵 ∈ ℝ+)
516ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐿 ∈ (0(,)1))
52 pntlemp.K . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
5352ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
5436simp3d 1144 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟𝐴)
55 eqid 2729 . . . . . . . . . . . . . 14 (𝑟 / 𝐷) = (𝑟 / 𝐷)
56 eqid 2729 . . . . . . . . . . . . . 14 (exp‘(𝐵 / (𝑟 / 𝐷))) = (exp‘(𝐵 / (𝑟 / 𝐷)))
57 simprl 770 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑠 ∈ ℝ+)
58 1rp 12915 . . . . . . . . . . . . . . . 16 1 ∈ ℝ+
59 rpaddcl 12935 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝑠 + 1) ∈ ℝ+)
6057, 58, 59sylancl 586 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑠 + 1) ∈ ℝ+)
6157rpge0d 12959 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 ≤ 𝑠)
62 1re 11134 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
6357rpred 12955 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑠 ∈ ℝ)
64 addge02 11649 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (0 ≤ 𝑠 ↔ 1 ≤ (𝑠 + 1)))
6562, 63, 64sylancr 587 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (0 ≤ 𝑠 ↔ 1 ≤ (𝑠 + 1)))
6661, 65mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 1 ≤ (𝑠 + 1))
6760, 66jca 511 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ((𝑠 + 1) ∈ ℝ+ ∧ 1 ≤ (𝑠 + 1)))
6857rpxrd 12956 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑠 ∈ ℝ*)
6963lep1d 12074 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑠 ≤ (𝑠 + 1))
70 df-ico 13272 . . . . . . . . . . . . . . . . 17 [,) = (𝑡 ∈ ℝ*, 𝑟 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑡𝑤𝑤 < 𝑟)})
71 xrletr 13078 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℝ* ∧ (𝑠 + 1) ∈ ℝ*𝑣 ∈ ℝ*) → ((𝑠 ≤ (𝑠 + 1) ∧ (𝑠 + 1) ≤ 𝑣) → 𝑠𝑣))
7270, 70, 71ixxss1 13284 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℝ*𝑠 ≤ (𝑠 + 1)) → ((𝑠 + 1)[,)+∞) ⊆ (𝑠[,)+∞))
7368, 69, 72syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ((𝑠 + 1)[,)+∞) ⊆ (𝑠[,)+∞))
74 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)
75 ssralv 4006 . . . . . . . . . . . . . . 15 (((𝑠 + 1)[,)+∞) ⊆ (𝑠[,)+∞) → (∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 → ∀𝑧 ∈ ((𝑠 + 1)[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
7673, 74, 75sylc 65 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∀𝑧 ∈ ((𝑠 + 1)[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)
771, 32, 49, 50, 51, 7, 8, 53, 42, 54, 55, 56, 67, 76pntlemp 27537 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))
78 rpre 12920 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℝ+𝑤 ∈ ℝ)
7978adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ)
8079leidd 11704 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → 𝑤𝑤)
81 elicopnf 13366 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℝ → (𝑤 ∈ (𝑤[,)+∞) ↔ (𝑤 ∈ ℝ ∧ 𝑤𝑤)))
8279, 81syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (𝑤 ∈ (𝑤[,)+∞) ↔ (𝑤 ∈ ℝ ∧ 𝑤𝑤)))
8379, 80, 82mpbir2and 713 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ (𝑤[,)+∞))
84 fveq2 6826 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑤 → (𝑅𝑣) = (𝑅𝑤))
85 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑤𝑣 = 𝑤)
8684, 85oveq12d 7371 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑤 → ((𝑅𝑣) / 𝑣) = ((𝑅𝑤) / 𝑤))
8786fveq2d 6830 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑤 → (abs‘((𝑅𝑣) / 𝑣)) = (abs‘((𝑅𝑤) / 𝑤)))
8887breq1d 5105 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑤 → ((abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
8988rspcv 3575 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (𝑤[,)+∞) → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
9083, 89syl 17 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
911pntrf 27490 . . . . . . . . . . . . . . . . . . . . 21 𝑅:ℝ+⟶ℝ
9291ffvelcdmi 7021 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ℝ+ → (𝑅𝑤) ∈ ℝ)
93 rerpdivcl 12943 . . . . . . . . . . . . . . . . . . . 20 (((𝑅𝑤) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → ((𝑅𝑤) / 𝑤) ∈ ℝ)
9492, 93mpancom 688 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ℝ+ → ((𝑅𝑤) / 𝑤) ∈ ℝ)
9594adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → ((𝑅𝑤) / 𝑤) ∈ ℝ)
9695recnd 11162 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → ((𝑅𝑤) / 𝑤) ∈ ℂ)
9796absge0d 15372 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → 0 ≤ (abs‘((𝑅𝑤) / 𝑤)))
9896abscld 15364 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (abs‘((𝑅𝑤) / 𝑤)) ∈ ℝ)
9948adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ)
100 letr 11228 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ (abs‘((𝑅𝑤) / 𝑤)) ∈ ℝ ∧ (𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ) → ((0 ≤ (abs‘((𝑅𝑤) / 𝑤)) ∧ (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
10131, 98, 99, 100mp3an2i 1468 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → ((0 ≤ (abs‘((𝑅𝑤) / 𝑤)) ∧ (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
10297, 101mpand 695 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → ((abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
10390, 102syld 47 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
104103rexlimdva 3130 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
10577, 104mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3))))
10646rpge0d 12959 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 ≤ (𝐹 · (𝑟↑3)))
10737, 47subge02d 11730 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (0 ≤ (𝐹 · (𝑟↑3)) ↔ (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝑟))
108106, 107mpbid 232 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝑟)
10948, 37, 33, 108, 54letrd 11291 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝐴)
110 elicc2 13332 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ↔ ((𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ ∧ 0 ≤ (𝑟 − (𝐹 · (𝑟↑3))) ∧ (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝐴)))
11131, 33, 110sylancr 587 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ↔ ((𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ ∧ 0 ≤ (𝑟 − (𝐹 · (𝑟↑3))) ∧ (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝐴)))
11248, 105, 109, 111mpbir3and 1343 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴))
113112, 77jca 511 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
114113rexlimdvaa 3131 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) → (∃𝑠 ∈ ℝ+𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))))
11529, 114biimtrid 242 . . . . . . . 8 ((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))))
116115anassrs 467 . . . . . . 7 (((𝜑𝑟 ≠ 0) ∧ 𝑟 ∈ (0[,]𝐴)) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))))
117116expimpd 453 . . . . . 6 ((𝜑𝑟 ≠ 0) → ((𝑟 ∈ (0[,]𝐴) ∧ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟) → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))))
118 breq2 5099 . . . . . . . 8 (𝑡 = 𝑟 → ((abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
119118rexralbidv 3195 . . . . . . 7 (𝑡 = 𝑟 → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
120119elrab 3650 . . . . . 6 (𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡} ↔ (𝑟 ∈ (0[,]𝐴) ∧ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
121 breq2 5099 . . . . . . . . 9 (𝑡 = (𝑟 − (𝐹 · (𝑟↑3))) → ((abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
122121rexralbidv 3195 . . . . . . . 8 (𝑡 = (𝑟 − (𝐹 · (𝑟↑3))) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
123 fveq2 6826 . . . . . . . . . . . . . 14 (𝑣 = 𝑧 → (𝑅𝑣) = (𝑅𝑧))
124 id 22 . . . . . . . . . . . . . 14 (𝑣 = 𝑧𝑣 = 𝑧)
125123, 124oveq12d 7371 . . . . . . . . . . . . 13 (𝑣 = 𝑧 → ((𝑅𝑣) / 𝑣) = ((𝑅𝑧) / 𝑧))
126125fveq2d 6830 . . . . . . . . . . . 12 (𝑣 = 𝑧 → (abs‘((𝑅𝑣) / 𝑣)) = (abs‘((𝑅𝑧) / 𝑧)))
127126breq1d 5105 . . . . . . . . . . 11 (𝑣 = 𝑧 → ((abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
128127cbvralvw 3207 . . . . . . . . . 10 (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ ∀𝑧 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))
129 oveq1 7360 . . . . . . . . . . 11 (𝑤 = 𝑦 → (𝑤[,)+∞) = (𝑦[,)+∞))
130129raleqdv 3290 . . . . . . . . . 10 (𝑤 = 𝑦 → (∀𝑧 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
131128, 130bitrid 283 . . . . . . . . 9 (𝑤 = 𝑦 → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
132131cbvrexvw 3208 . . . . . . . 8 (∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))
133122, 132bitr4di 289 . . . . . . 7 (𝑡 = (𝑟 − (𝐹 · (𝑟↑3))) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
134133elrab 3650 . . . . . 6 ((𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡} ↔ ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
135117, 120, 1343imtr4g 296 . . . . 5 ((𝜑𝑟 ≠ 0) → (𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡} → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}))
136135imp 406 . . . 4 (((𝜑𝑟 ≠ 0) ∧ 𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
137136an32s 652 . . 3 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 ≠ 0) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
13826, 137pm2.61dane 3012 . 2 ((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
1391, 2, 3, 4, 10, 138pntlem3 27536 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3396  wss 3905   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  +∞cpnf 11165  *cxr 11167   < clt 11168  cle 11169  cmin 11365   / cdiv 11795  cn 12146  2c2 12201  3c3 12202  cz 12489  cdc 12609  +crp 12911  (,)cioo 13266  [,)cico 13268  [,]cicc 13269  cexp 13986  abscabs 15159  𝑟 crli 15410  expce 15986  ψcchp 27019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-o1 15415  df-lo1 15416  df-sum 15612  df-ef 15992  df-e 15993  df-sin 15994  df-cos 15995  df-tan 15996  df-pi 15997  df-dvds 16182  df-gcd 16424  df-prm 16601  df-pc 16767  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-ulm 26302  df-log 26481  df-cxp 26482  df-atan 26793  df-em 26919  df-cht 27023  df-vma 27024  df-chp 27025  df-ppi 27026  df-mu 27027
This theorem is referenced by:  pnt3  27539
  Copyright terms: Public domain W3C validator