![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmmpti | Structured version Visualization version GIF version |
Description: Domain of the mapping operation. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fnmpti.1 | ⊢ 𝐵 ∈ V |
fnmpti.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
dmmpti | ⊢ dom 𝐹 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmpti.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | fnmpti.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 1, 2 | fnmpti 6694 | . 2 ⊢ 𝐹 Fn 𝐴 |
4 | 3 | fndmi 6654 | 1 ⊢ dom 𝐹 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 Vcvv 3472 ↦ cmpt 5232 dom cdm 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-fun 6546 df-fn 6547 |
This theorem is referenced by: fvmptex 7013 resfunexg 7220 brtpos2 8221 pwfilem 9181 inlresf 9913 inrresf 9915 vdwlem8 16927 oppccatf 17680 lubdm 18310 glbdm 18323 dprd2dlem2 19953 dprd2dlem1 19954 dprd2da 19955 ablfac1c 19984 ablfac1eu 19986 ablfaclem2 19999 ablfaclem3 20000 elocv 21442 dmtopon 22647 dfac14 23344 kqtop 23471 symgtgp 23832 eltsms 23859 ressprdsds 24099 minveclem1 25174 isi1f 25425 itg1val 25434 cmvth 25742 mvth 25743 lhop2 25766 dvfsumabs 25774 dvfsumrlim2 25783 taylthlem1 26119 taylthlem2 26120 ulmdvlem1 26146 pige3ALT 26263 relogcn 26380 atandm 26615 atanf 26619 atancn 26675 dmarea 26696 dfarea 26699 efrlim 26708 lgamgulmlem2 26768 dchrptlem2 27002 dchrptlem3 27003 dchrisum0 27257 nosupno 27440 nosupdm 27441 nosupbday 27442 nosupres 27444 nosupbnd1lem1 27445 noinfno 27455 noinfdm 27456 incistruhgr 28604 vsfval 30151 ipasslem8 30355 minvecolem1 30392 xppreima2 32141 ofpreima 32155 rmfsupp2 32655 zarclsint 33148 zartopn 33151 zarmxt1 33156 zarcmplem 33157 dmsigagen 33438 measbase 33491 sseqf 33687 ballotlem7 33830 gg-cmvth 35469 bj-inftyexpitaudisj 36391 bj-inftyexpidisj 36396 bj-elccinfty 36400 bj-minftyccb 36411 fin2so 36780 poimirlem30 36823 poimir 36826 dvtan 36843 itg2addnclem2 36845 ftc1anclem6 36871 totbndbnd 36962 tfsconcatrev 42402 comptiunov2i 42761 lhe4.4ex1a 43392 dvsinax 44929 fourierdlem62 45184 fourierdlem70 45192 fourierdlem71 45193 fourierdlem80 45202 fouriersw 45247 smflimsuplem1 45836 smflimsuplem4 45839 mndpsuppss 47137 scmsuppss 47138 lincext2 47225 aacllem 47937 |
Copyright terms: Public domain | W3C validator |