| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmpti | Structured version Visualization version GIF version | ||
| Description: Domain of the mapping operation. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fnmpti.1 | ⊢ 𝐵 ∈ V |
| fnmpti.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| dmmpti | ⊢ dom 𝐹 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmpti.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | fnmpti.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | fnmpti 6661 | . 2 ⊢ 𝐹 Fn 𝐴 |
| 4 | 3 | fndmi 6622 | 1 ⊢ dom 𝐹 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3447 ↦ cmpt 5188 dom cdm 5638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-fun 6513 df-fn 6514 |
| This theorem is referenced by: fvmptex 6982 resfunexg 7189 brtpos2 8211 pwfilem 9267 inlresf 9867 inrresf 9869 vdwlem8 16959 oppccatf 17689 lubdm 18310 glbdm 18323 mndpsuppss 18692 dprd2dlem2 19972 dprd2dlem1 19973 dprd2da 19974 ablfac1c 20003 ablfac1eu 20005 ablfaclem2 20018 ablfaclem3 20019 elocv 21577 dmtopon 22810 dfac14 23505 kqtop 23632 symgtgp 23993 eltsms 24020 ressprdsds 24259 minveclem1 25324 isi1f 25575 itg1val 25584 cmvth 25895 cmvthOLD 25896 mvth 25897 lhop2 25920 dvfsumabs 25929 dvfsumrlim2 25939 taylthlem1 26281 taylthlem2 26282 taylthlem2OLD 26283 ulmdvlem1 26309 pige3ALT 26429 relogcn 26547 atandm 26786 atanf 26790 atancn 26846 dmarea 26867 dfarea 26870 efrlim 26879 efrlimOLD 26880 lgamgulmlem2 26940 dchrptlem2 27176 dchrptlem3 27177 dchrisum0 27431 nosupno 27615 nosupdm 27616 nosupbday 27617 nosupres 27619 nosupbnd1lem1 27620 noinfno 27630 noinfdm 27631 incistruhgr 29006 vsfval 30562 ipasslem8 30766 minvecolem1 30803 xppreima2 32575 ofpreima 32589 rmfsupp2 33189 zarclsint 33862 zartopn 33865 zarmxt1 33870 zarcmplem 33871 dmsigagen 34134 measbase 34187 sseqf 34383 ballotlem7 34527 bj-inftyexpitaudisj 37193 bj-inftyexpidisj 37198 bj-elccinfty 37202 bj-minftyccb 37213 fin2so 37601 poimirlem30 37644 poimir 37647 dvtan 37664 itg2addnclem2 37666 ftc1anclem6 37692 totbndbnd 37783 tfsconcatrev 43337 comptiunov2i 43695 lhe4.4ex1a 44318 dvsinax 45911 fourierdlem62 46166 fourierdlem70 46174 fourierdlem71 46175 fourierdlem80 46184 fouriersw 46229 smflimsuplem1 46818 smflimsuplem4 46821 scmsuppss 48359 lincext2 48444 idfurcl 49087 reldmprcof1 49370 reldmlmd2 49642 reldmcmd2 49643 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |