| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmpti | Structured version Visualization version GIF version | ||
| Description: Domain of the mapping operation. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fnmpti.1 | ⊢ 𝐵 ∈ V |
| fnmpti.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| dmmpti | ⊢ dom 𝐹 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmpti.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | fnmpti.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | fnmpti 6680 | . 2 ⊢ 𝐹 Fn 𝐴 |
| 4 | 3 | fndmi 6641 | 1 ⊢ dom 𝐹 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3459 ↦ cmpt 5201 dom cdm 5654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-fun 6532 df-fn 6533 |
| This theorem is referenced by: fvmptex 6999 resfunexg 7206 brtpos2 8229 pwfilem 9326 inlresf 9926 inrresf 9928 vdwlem8 17006 oppccatf 17738 lubdm 18359 glbdm 18372 mndpsuppss 18741 dprd2dlem2 20021 dprd2dlem1 20022 dprd2da 20023 ablfac1c 20052 ablfac1eu 20054 ablfaclem2 20067 ablfaclem3 20068 elocv 21626 dmtopon 22859 dfac14 23554 kqtop 23681 symgtgp 24042 eltsms 24069 ressprdsds 24308 minveclem1 25374 isi1f 25625 itg1val 25634 cmvth 25945 cmvthOLD 25946 mvth 25947 lhop2 25970 dvfsumabs 25979 dvfsumrlim2 25989 taylthlem1 26331 taylthlem2 26332 taylthlem2OLD 26333 ulmdvlem1 26359 pige3ALT 26479 relogcn 26597 atandm 26836 atanf 26840 atancn 26896 dmarea 26917 dfarea 26920 efrlim 26929 efrlimOLD 26930 lgamgulmlem2 26990 dchrptlem2 27226 dchrptlem3 27227 dchrisum0 27481 nosupno 27665 nosupdm 27666 nosupbday 27667 nosupres 27669 nosupbnd1lem1 27670 noinfno 27680 noinfdm 27681 incistruhgr 29004 vsfval 30560 ipasslem8 30764 minvecolem1 30801 xppreima2 32575 ofpreima 32589 rmfsupp2 33179 zarclsint 33849 zartopn 33852 zarmxt1 33857 zarcmplem 33858 dmsigagen 34121 measbase 34174 sseqf 34370 ballotlem7 34514 bj-inftyexpitaudisj 37169 bj-inftyexpidisj 37174 bj-elccinfty 37178 bj-minftyccb 37189 fin2so 37577 poimirlem30 37620 poimir 37623 dvtan 37640 itg2addnclem2 37642 ftc1anclem6 37668 totbndbnd 37759 tfsconcatrev 43319 comptiunov2i 43677 lhe4.4ex1a 44301 dvsinax 45890 fourierdlem62 46145 fourierdlem70 46153 fourierdlem71 46154 fourierdlem80 46163 fouriersw 46208 smflimsuplem1 46797 smflimsuplem4 46800 scmsuppss 48294 lincext2 48379 idfurcl 49006 reldmprcof1 49239 reldmlmd2 49473 reldmcmd2 49474 aacllem 49613 |
| Copyright terms: Public domain | W3C validator |