| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmpti | Structured version Visualization version GIF version | ||
| Description: Domain of the mapping operation. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fnmpti.1 | ⊢ 𝐵 ∈ V |
| fnmpti.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| dmmpti | ⊢ dom 𝐹 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmpti.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | fnmpti.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | fnmpti 6643 | . 2 ⊢ 𝐹 Fn 𝐴 |
| 4 | 3 | fndmi 6604 | 1 ⊢ dom 𝐹 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3444 ↦ cmpt 5183 dom cdm 5631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-fun 6501 df-fn 6502 |
| This theorem is referenced by: fvmptex 6964 resfunexg 7171 brtpos2 8188 pwfilem 9243 inlresf 9843 inrresf 9845 vdwlem8 16935 oppccatf 17665 lubdm 18286 glbdm 18299 mndpsuppss 18668 dprd2dlem2 19948 dprd2dlem1 19949 dprd2da 19950 ablfac1c 19979 ablfac1eu 19981 ablfaclem2 19994 ablfaclem3 19995 elocv 21553 dmtopon 22786 dfac14 23481 kqtop 23608 symgtgp 23969 eltsms 23996 ressprdsds 24235 minveclem1 25300 isi1f 25551 itg1val 25560 cmvth 25871 cmvthOLD 25872 mvth 25873 lhop2 25896 dvfsumabs 25905 dvfsumrlim2 25915 taylthlem1 26257 taylthlem2 26258 taylthlem2OLD 26259 ulmdvlem1 26285 pige3ALT 26405 relogcn 26523 atandm 26762 atanf 26766 atancn 26822 dmarea 26843 dfarea 26846 efrlim 26855 efrlimOLD 26856 lgamgulmlem2 26916 dchrptlem2 27152 dchrptlem3 27153 dchrisum0 27407 nosupno 27591 nosupdm 27592 nosupbday 27593 nosupres 27595 nosupbnd1lem1 27596 noinfno 27606 noinfdm 27607 incistruhgr 28982 vsfval 30535 ipasslem8 30739 minvecolem1 30776 xppreima2 32548 ofpreima 32562 rmfsupp2 33162 zarclsint 33835 zartopn 33838 zarmxt1 33843 zarcmplem 33844 dmsigagen 34107 measbase 34160 sseqf 34356 ballotlem7 34500 bj-inftyexpitaudisj 37166 bj-inftyexpidisj 37171 bj-elccinfty 37175 bj-minftyccb 37186 fin2so 37574 poimirlem30 37617 poimir 37620 dvtan 37637 itg2addnclem2 37639 ftc1anclem6 37665 totbndbnd 37756 tfsconcatrev 43310 comptiunov2i 43668 lhe4.4ex1a 44291 dvsinax 45884 fourierdlem62 46139 fourierdlem70 46147 fourierdlem71 46148 fourierdlem80 46157 fouriersw 46202 smflimsuplem1 46791 smflimsuplem4 46794 scmsuppss 48332 lincext2 48417 idfurcl 49060 reldmprcof1 49343 reldmlmd2 49615 reldmcmd2 49616 aacllem 49763 |
| Copyright terms: Public domain | W3C validator |