| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmpti | Structured version Visualization version GIF version | ||
| Description: Domain of the mapping operation. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fnmpti.1 | ⊢ 𝐵 ∈ V |
| fnmpti.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| dmmpti | ⊢ dom 𝐹 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmpti.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | fnmpti.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | fnmpti 6625 | . 2 ⊢ 𝐹 Fn 𝐴 |
| 4 | 3 | fndmi 6586 | 1 ⊢ dom 𝐹 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3436 ↦ cmpt 5173 dom cdm 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-fun 6484 df-fn 6485 |
| This theorem is referenced by: fvmptex 6944 resfunexg 7151 brtpos2 8165 pwfilem 9207 inlresf 9810 inrresf 9812 vdwlem8 16900 oppccatf 17634 lubdm 18255 glbdm 18268 mndpsuppss 18639 dprd2dlem2 19921 dprd2dlem1 19922 dprd2da 19923 ablfac1c 19952 ablfac1eu 19954 ablfaclem2 19967 ablfaclem3 19968 elocv 21575 dmtopon 22808 dfac14 23503 kqtop 23630 symgtgp 23991 eltsms 24018 ressprdsds 24257 minveclem1 25322 isi1f 25573 itg1val 25582 cmvth 25893 cmvthOLD 25894 mvth 25895 lhop2 25918 dvfsumabs 25927 dvfsumrlim2 25937 taylthlem1 26279 taylthlem2 26280 taylthlem2OLD 26281 ulmdvlem1 26307 pige3ALT 26427 relogcn 26545 atandm 26784 atanf 26788 atancn 26844 dmarea 26865 dfarea 26868 efrlim 26877 efrlimOLD 26878 lgamgulmlem2 26938 dchrptlem2 27174 dchrptlem3 27175 dchrisum0 27429 nosupno 27613 nosupdm 27614 nosupbday 27615 nosupres 27617 nosupbnd1lem1 27618 noinfno 27628 noinfdm 27629 incistruhgr 29024 vsfval 30577 ipasslem8 30781 minvecolem1 30818 xppreima2 32594 ofpreima 32608 rmfsupp2 33178 zarclsint 33839 zartopn 33842 zarmxt1 33847 zarcmplem 33848 dmsigagen 34111 measbase 34164 sseqf 34360 ballotlem7 34504 bj-inftyexpitaudisj 37179 bj-inftyexpidisj 37184 bj-elccinfty 37188 bj-minftyccb 37199 fin2so 37587 poimirlem30 37630 poimir 37633 dvtan 37650 itg2addnclem2 37652 ftc1anclem6 37678 totbndbnd 37769 tfsconcatrev 43321 comptiunov2i 43679 lhe4.4ex1a 44302 dvsinax 45894 fourierdlem62 46149 fourierdlem70 46157 fourierdlem71 46158 fourierdlem80 46167 fouriersw 46212 smflimsuplem1 46801 smflimsuplem4 46804 scmsuppss 48355 lincext2 48440 idfurcl 49083 reldmprcof1 49366 reldmlmd2 49638 reldmcmd2 49639 aacllem 49786 |
| Copyright terms: Public domain | W3C validator |