| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmpti | Structured version Visualization version GIF version | ||
| Description: Domain of the mapping operation. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fnmpti.1 | ⊢ 𝐵 ∈ V |
| fnmpti.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| dmmpti | ⊢ dom 𝐹 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmpti.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | fnmpti.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | fnmpti 6664 | . 2 ⊢ 𝐹 Fn 𝐴 |
| 4 | 3 | fndmi 6625 | 1 ⊢ dom 𝐹 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3450 ↦ cmpt 5191 dom cdm 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-fun 6516 df-fn 6517 |
| This theorem is referenced by: fvmptex 6985 resfunexg 7192 brtpos2 8214 pwfilem 9274 inlresf 9874 inrresf 9876 vdwlem8 16966 oppccatf 17696 lubdm 18317 glbdm 18330 mndpsuppss 18699 dprd2dlem2 19979 dprd2dlem1 19980 dprd2da 19981 ablfac1c 20010 ablfac1eu 20012 ablfaclem2 20025 ablfaclem3 20026 elocv 21584 dmtopon 22817 dfac14 23512 kqtop 23639 symgtgp 24000 eltsms 24027 ressprdsds 24266 minveclem1 25331 isi1f 25582 itg1val 25591 cmvth 25902 cmvthOLD 25903 mvth 25904 lhop2 25927 dvfsumabs 25936 dvfsumrlim2 25946 taylthlem1 26288 taylthlem2 26289 taylthlem2OLD 26290 ulmdvlem1 26316 pige3ALT 26436 relogcn 26554 atandm 26793 atanf 26797 atancn 26853 dmarea 26874 dfarea 26877 efrlim 26886 efrlimOLD 26887 lgamgulmlem2 26947 dchrptlem2 27183 dchrptlem3 27184 dchrisum0 27438 nosupno 27622 nosupdm 27623 nosupbday 27624 nosupres 27626 nosupbnd1lem1 27627 noinfno 27637 noinfdm 27638 incistruhgr 29013 vsfval 30569 ipasslem8 30773 minvecolem1 30810 xppreima2 32582 ofpreima 32596 rmfsupp2 33196 zarclsint 33869 zartopn 33872 zarmxt1 33877 zarcmplem 33878 dmsigagen 34141 measbase 34194 sseqf 34390 ballotlem7 34534 bj-inftyexpitaudisj 37200 bj-inftyexpidisj 37205 bj-elccinfty 37209 bj-minftyccb 37220 fin2so 37608 poimirlem30 37651 poimir 37654 dvtan 37671 itg2addnclem2 37673 ftc1anclem6 37699 totbndbnd 37790 tfsconcatrev 43344 comptiunov2i 43702 lhe4.4ex1a 44325 dvsinax 45918 fourierdlem62 46173 fourierdlem70 46181 fourierdlem71 46182 fourierdlem80 46191 fouriersw 46236 smflimsuplem1 46825 smflimsuplem4 46828 scmsuppss 48363 lincext2 48448 idfurcl 49091 reldmprcof1 49374 reldmlmd2 49646 reldmcmd2 49647 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |