![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmmpti | Structured version Visualization version GIF version |
Description: Domain of the mapping operation. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fnmpti.1 | ⊢ 𝐵 ∈ V |
fnmpti.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
dmmpti | ⊢ dom 𝐹 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmpti.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | fnmpti.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 1, 2 | fnmpti 6723 | . 2 ⊢ 𝐹 Fn 𝐴 |
4 | 3 | fndmi 6683 | 1 ⊢ dom 𝐹 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 ↦ cmpt 5249 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-fun 6575 df-fn 6576 |
This theorem is referenced by: fvmptex 7043 resfunexg 7252 brtpos2 8273 pwfilem 9384 inlresf 9983 inrresf 9985 vdwlem8 17035 oppccatf 17788 lubdm 18421 glbdm 18434 dprd2dlem2 20084 dprd2dlem1 20085 dprd2da 20086 ablfac1c 20115 ablfac1eu 20117 ablfaclem2 20130 ablfaclem3 20131 elocv 21709 dmtopon 22950 dfac14 23647 kqtop 23774 symgtgp 24135 eltsms 24162 ressprdsds 24402 minveclem1 25477 isi1f 25728 itg1val 25737 cmvth 26049 cmvthOLD 26050 mvth 26051 lhop2 26074 dvfsumabs 26083 dvfsumrlim2 26093 taylthlem1 26433 taylthlem2 26434 taylthlem2OLD 26435 ulmdvlem1 26461 pige3ALT 26580 relogcn 26698 atandm 26937 atanf 26941 atancn 26997 dmarea 27018 dfarea 27021 efrlim 27030 efrlimOLD 27031 lgamgulmlem2 27091 dchrptlem2 27327 dchrptlem3 27328 dchrisum0 27582 nosupno 27766 nosupdm 27767 nosupbday 27768 nosupres 27770 nosupbnd1lem1 27771 noinfno 27781 noinfdm 27782 incistruhgr 29114 vsfval 30665 ipasslem8 30869 minvecolem1 30906 xppreima2 32669 ofpreima 32683 rmfsupp2 33218 zarclsint 33818 zartopn 33821 zarmxt1 33826 zarcmplem 33827 dmsigagen 34108 measbase 34161 sseqf 34357 ballotlem7 34500 bj-inftyexpitaudisj 37171 bj-inftyexpidisj 37176 bj-elccinfty 37180 bj-minftyccb 37191 fin2so 37567 poimirlem30 37610 poimir 37613 dvtan 37630 itg2addnclem2 37632 ftc1anclem6 37658 totbndbnd 37749 tfsconcatrev 43310 comptiunov2i 43668 lhe4.4ex1a 44298 dvsinax 45834 fourierdlem62 46089 fourierdlem70 46097 fourierdlem71 46098 fourierdlem80 46107 fouriersw 46152 smflimsuplem1 46741 smflimsuplem4 46744 mndpsuppss 48096 scmsuppss 48097 lincext2 48184 aacllem 48895 |
Copyright terms: Public domain | W3C validator |