| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmpti | Structured version Visualization version GIF version | ||
| Description: Domain of the mapping operation. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fnmpti.1 | ⊢ 𝐵 ∈ V |
| fnmpti.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| dmmpti | ⊢ dom 𝐹 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmpti.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | fnmpti.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | fnmpti 6711 | . 2 ⊢ 𝐹 Fn 𝐴 |
| 4 | 3 | fndmi 6672 | 1 ⊢ dom 𝐹 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3480 ↦ cmpt 5225 dom cdm 5685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-fun 6563 df-fn 6564 |
| This theorem is referenced by: fvmptex 7030 resfunexg 7235 brtpos2 8257 pwfilem 9356 inlresf 9954 inrresf 9956 vdwlem8 17026 oppccatf 17771 lubdm 18396 glbdm 18409 mndpsuppss 18778 dprd2dlem2 20060 dprd2dlem1 20061 dprd2da 20062 ablfac1c 20091 ablfac1eu 20093 ablfaclem2 20106 ablfaclem3 20107 elocv 21686 dmtopon 22929 dfac14 23626 kqtop 23753 symgtgp 24114 eltsms 24141 ressprdsds 24381 minveclem1 25458 isi1f 25709 itg1val 25718 cmvth 26029 cmvthOLD 26030 mvth 26031 lhop2 26054 dvfsumabs 26063 dvfsumrlim2 26073 taylthlem1 26415 taylthlem2 26416 taylthlem2OLD 26417 ulmdvlem1 26443 pige3ALT 26562 relogcn 26680 atandm 26919 atanf 26923 atancn 26979 dmarea 27000 dfarea 27003 efrlim 27012 efrlimOLD 27013 lgamgulmlem2 27073 dchrptlem2 27309 dchrptlem3 27310 dchrisum0 27564 nosupno 27748 nosupdm 27749 nosupbday 27750 nosupres 27752 nosupbnd1lem1 27753 noinfno 27763 noinfdm 27764 incistruhgr 29096 vsfval 30652 ipasslem8 30856 minvecolem1 30893 xppreima2 32661 ofpreima 32675 rmfsupp2 33242 zarclsint 33871 zartopn 33874 zarmxt1 33879 zarcmplem 33880 dmsigagen 34145 measbase 34198 sseqf 34394 ballotlem7 34538 bj-inftyexpitaudisj 37206 bj-inftyexpidisj 37211 bj-elccinfty 37215 bj-minftyccb 37226 fin2so 37614 poimirlem30 37657 poimir 37660 dvtan 37677 itg2addnclem2 37679 ftc1anclem6 37705 totbndbnd 37796 tfsconcatrev 43361 comptiunov2i 43719 lhe4.4ex1a 44348 dvsinax 45928 fourierdlem62 46183 fourierdlem70 46191 fourierdlem71 46192 fourierdlem80 46201 fouriersw 46246 smflimsuplem1 46835 smflimsuplem4 46838 scmsuppss 48287 lincext2 48372 aacllem 49320 |
| Copyright terms: Public domain | W3C validator |