![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmmpti | Structured version Visualization version GIF version |
Description: Domain of the mapping operation. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fnmpti.1 | ⊢ 𝐵 ∈ V |
fnmpti.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
dmmpti | ⊢ dom 𝐹 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmpti.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | fnmpti.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 1, 2 | fnmpti 6694 | . 2 ⊢ 𝐹 Fn 𝐴 |
4 | 3 | fndmi 6654 | 1 ⊢ dom 𝐹 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 Vcvv 3475 ↦ cmpt 5232 dom cdm 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-fun 6546 df-fn 6547 |
This theorem is referenced by: fvmptex 7013 resfunexg 7217 brtpos2 8217 pwfilem 9177 inlresf 9909 inrresf 9911 vdwlem8 16921 oppccatf 17674 lubdm 18304 glbdm 18317 dprd2dlem2 19910 dprd2dlem1 19911 dprd2da 19912 ablfac1c 19941 ablfac1eu 19943 ablfaclem2 19956 ablfaclem3 19957 elocv 21221 dmtopon 22425 dfac14 23122 kqtop 23249 symgtgp 23610 eltsms 23637 ressprdsds 23877 minveclem1 24941 isi1f 25191 itg1val 25200 cmvth 25508 mvth 25509 lhop2 25532 dvfsumabs 25540 dvfsumrlim2 25549 taylthlem1 25885 taylthlem2 25886 ulmdvlem1 25912 pige3ALT 26029 relogcn 26146 atandm 26381 atanf 26385 atancn 26441 dmarea 26462 dfarea 26465 efrlim 26474 lgamgulmlem2 26534 dchrptlem2 26768 dchrptlem3 26769 dchrisum0 27023 nosupno 27206 nosupdm 27207 nosupbday 27208 nosupres 27210 nosupbnd1lem1 27211 noinfno 27221 noinfdm 27222 incistruhgr 28339 vsfval 29886 ipasslem8 30090 minvecolem1 30127 xppreima2 31876 ofpreima 31890 rmfsupp2 32387 zarclsint 32852 zartopn 32855 zarmxt1 32860 zarcmplem 32861 dmsigagen 33142 measbase 33195 sseqf 33391 ballotlem7 33534 gg-cmvth 35181 bj-inftyexpitaudisj 36086 bj-inftyexpidisj 36091 bj-elccinfty 36095 bj-minftyccb 36106 fin2so 36475 poimirlem30 36518 poimir 36521 dvtan 36538 itg2addnclem2 36540 ftc1anclem6 36566 totbndbnd 36657 tfsconcatrev 42098 comptiunov2i 42457 lhe4.4ex1a 43088 dvsinax 44629 fourierdlem62 44884 fourierdlem70 44892 fourierdlem71 44893 fourierdlem80 44902 fouriersw 44947 smflimsuplem1 45536 smflimsuplem4 45539 mndpsuppss 47047 scmsuppss 47048 lincext2 47136 aacllem 47848 |
Copyright terms: Public domain | W3C validator |