Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmmpti | Structured version Visualization version GIF version |
Description: Domain of the mapping operation. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fnmpti.1 | ⊢ 𝐵 ∈ V |
fnmpti.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
dmmpti | ⊢ dom 𝐹 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmpti.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | fnmpti.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 1, 2 | fnmpti 6585 | . 2 ⊢ 𝐹 Fn 𝐴 |
4 | 3 | fndmi 6546 | 1 ⊢ dom 𝐹 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2107 Vcvv 3433 ↦ cmpt 5158 dom cdm 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-fun 6439 df-fn 6440 |
This theorem is referenced by: fvmptex 6898 resfunexg 7100 brtpos2 8057 pwfilem 8969 inlresf 9681 inrresf 9683 vdwlem8 16698 oppccatf 17448 lubdm 18078 glbdm 18091 dprd2dlem2 19652 dprd2dlem1 19653 dprd2da 19654 ablfac1c 19683 ablfac1eu 19685 ablfaclem2 19698 ablfaclem3 19699 elocv 20882 dmtopon 22081 dfac14 22778 kqtop 22905 symgtgp 23266 eltsms 23293 ressprdsds 23533 minveclem1 24597 isi1f 24847 itg1val 24856 cmvth 25164 mvth 25165 lhop2 25188 dvfsumabs 25196 dvfsumrlim2 25205 taylthlem1 25541 taylthlem2 25542 ulmdvlem1 25568 pige3ALT 25685 relogcn 25802 atandm 26035 atanf 26039 atancn 26095 dmarea 26116 dfarea 26119 efrlim 26128 lgamgulmlem2 26188 dchrptlem2 26422 dchrptlem3 26423 dchrisum0 26677 incistruhgr 27458 vsfval 29004 ipasslem8 29208 minvecolem1 29245 xppreima2 30997 ofpreima 31011 rmfsupp2 31501 zarclsint 31831 zartopn 31834 zarmxt1 31839 zarcmplem 31840 dmsigagen 32121 measbase 32174 sseqf 32368 ballotlem7 32511 nosupno 33915 nosupdm 33916 nosupbday 33917 nosupres 33919 nosupbnd1lem1 33920 noinfno 33930 noinfdm 33931 bj-inftyexpitaudisj 35385 bj-inftyexpidisj 35390 bj-elccinfty 35394 bj-minftyccb 35405 fin2so 35773 poimirlem30 35816 poimir 35819 dvtan 35836 itg2addnclem2 35838 ftc1anclem6 35864 totbndbnd 35956 comptiunov2i 41321 lhe4.4ex1a 41954 dvsinax 43461 fourierdlem62 43716 fourierdlem70 43724 fourierdlem71 43725 fourierdlem80 43734 fouriersw 43779 smflimsuplem1 44364 smflimsuplem4 44367 mndpsuppss 45718 scmsuppss 45719 lincext2 45807 aacllem 46516 |
Copyright terms: Public domain | W3C validator |