Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmmpti | Structured version Visualization version GIF version |
Description: Domain of the mapping operation. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fnmpti.1 | ⊢ 𝐵 ∈ V |
fnmpti.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
dmmpti | ⊢ dom 𝐹 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmpti.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | fnmpti.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 1, 2 | fnmpti 6560 | . 2 ⊢ 𝐹 Fn 𝐴 |
4 | 3 | fndmi 6521 | 1 ⊢ dom 𝐹 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 ↦ cmpt 5153 dom cdm 5580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-fun 6420 df-fn 6421 |
This theorem is referenced by: fvmptex 6871 resfunexg 7073 brtpos2 8019 pwfilem 8922 inlresf 9603 inrresf 9605 vdwlem8 16617 oppccatf 17356 lubdm 17984 glbdm 17997 dprd2dlem2 19558 dprd2dlem1 19559 dprd2da 19560 ablfac1c 19589 ablfac1eu 19591 ablfaclem2 19604 ablfaclem3 19605 elocv 20785 dmtopon 21980 dfac14 22677 kqtop 22804 symgtgp 23165 eltsms 23192 ressprdsds 23432 minveclem1 24493 isi1f 24743 itg1val 24752 cmvth 25060 mvth 25061 lhop2 25084 dvfsumabs 25092 dvfsumrlim2 25101 taylthlem1 25437 taylthlem2 25438 ulmdvlem1 25464 pige3ALT 25581 relogcn 25698 atandm 25931 atanf 25935 atancn 25991 dmarea 26012 dfarea 26015 efrlim 26024 lgamgulmlem2 26084 dchrptlem2 26318 dchrptlem3 26319 dchrisum0 26573 incistruhgr 27352 vsfval 28896 ipasslem8 29100 minvecolem1 29137 xppreima2 30889 ofpreima 30904 rmfsupp2 31394 zarclsint 31724 zartopn 31727 zarmxt1 31732 zarcmplem 31733 dmsigagen 32012 measbase 32065 sseqf 32259 ballotlem7 32402 nosupno 33833 nosupdm 33834 nosupbday 33835 nosupres 33837 nosupbnd1lem1 33838 noinfno 33848 noinfdm 33849 bj-inftyexpitaudisj 35303 bj-inftyexpidisj 35308 bj-elccinfty 35312 bj-minftyccb 35323 fin2so 35691 poimirlem30 35734 poimir 35737 dvtan 35754 itg2addnclem2 35756 ftc1anclem6 35782 totbndbnd 35874 comptiunov2i 41203 lhe4.4ex1a 41836 dvsinax 43344 fourierdlem62 43599 fourierdlem70 43607 fourierdlem71 43608 fourierdlem80 43617 fouriersw 43662 smflimsuplem1 44240 smflimsuplem4 44243 mndpsuppss 45595 scmsuppss 45596 lincext2 45684 aacllem 46391 |
Copyright terms: Public domain | W3C validator |