| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmpti | Structured version Visualization version GIF version | ||
| Description: Domain of the mapping operation. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fnmpti.1 | ⊢ 𝐵 ∈ V |
| fnmpti.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| dmmpti | ⊢ dom 𝐹 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmpti.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | fnmpti.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | fnmpti 6643 | . 2 ⊢ 𝐹 Fn 𝐴 |
| 4 | 3 | fndmi 6604 | 1 ⊢ dom 𝐹 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3444 ↦ cmpt 5183 dom cdm 5631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-fun 6501 df-fn 6502 |
| This theorem is referenced by: fvmptex 6964 resfunexg 7171 brtpos2 8188 pwfilem 9243 inlresf 9843 inrresf 9845 vdwlem8 16935 oppccatf 17669 lubdm 18290 glbdm 18303 mndpsuppss 18674 dprd2dlem2 19956 dprd2dlem1 19957 dprd2da 19958 ablfac1c 19987 ablfac1eu 19989 ablfaclem2 20002 ablfaclem3 20003 elocv 21610 dmtopon 22843 dfac14 23538 kqtop 23665 symgtgp 24026 eltsms 24053 ressprdsds 24292 minveclem1 25357 isi1f 25608 itg1val 25617 cmvth 25928 cmvthOLD 25929 mvth 25930 lhop2 25953 dvfsumabs 25962 dvfsumrlim2 25972 taylthlem1 26314 taylthlem2 26315 taylthlem2OLD 26316 ulmdvlem1 26342 pige3ALT 26462 relogcn 26580 atandm 26819 atanf 26823 atancn 26879 dmarea 26900 dfarea 26903 efrlim 26912 efrlimOLD 26913 lgamgulmlem2 26973 dchrptlem2 27209 dchrptlem3 27210 dchrisum0 27464 nosupno 27648 nosupdm 27649 nosupbday 27650 nosupres 27652 nosupbnd1lem1 27653 noinfno 27663 noinfdm 27664 incistruhgr 29059 vsfval 30612 ipasslem8 30816 minvecolem1 30853 xppreima2 32625 ofpreima 32639 rmfsupp2 33205 zarclsint 33855 zartopn 33858 zarmxt1 33863 zarcmplem 33864 dmsigagen 34127 measbase 34180 sseqf 34376 ballotlem7 34520 bj-inftyexpitaudisj 37186 bj-inftyexpidisj 37191 bj-elccinfty 37195 bj-minftyccb 37206 fin2so 37594 poimirlem30 37637 poimir 37640 dvtan 37657 itg2addnclem2 37659 ftc1anclem6 37685 totbndbnd 37776 tfsconcatrev 43330 comptiunov2i 43688 lhe4.4ex1a 44311 dvsinax 45904 fourierdlem62 46159 fourierdlem70 46167 fourierdlem71 46168 fourierdlem80 46177 fouriersw 46222 smflimsuplem1 46811 smflimsuplem4 46814 scmsuppss 48352 lincext2 48437 idfurcl 49080 reldmprcof1 49363 reldmlmd2 49635 reldmcmd2 49636 aacllem 49783 |
| Copyright terms: Public domain | W3C validator |