![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmmpti | Structured version Visualization version GIF version |
Description: Domain of the mapping operation. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fnmpti.1 | ⊢ 𝐵 ∈ V |
fnmpti.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
dmmpti | ⊢ dom 𝐹 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmpti.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | fnmpti.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 1, 2 | fnmpti 6711 | . 2 ⊢ 𝐹 Fn 𝐴 |
4 | 3 | fndmi 6672 | 1 ⊢ dom 𝐹 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∈ wcel 2105 Vcvv 3477 ↦ cmpt 5230 dom cdm 5688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-fun 6564 df-fn 6565 |
This theorem is referenced by: fvmptex 7029 resfunexg 7234 brtpos2 8255 pwfilem 9353 inlresf 9951 inrresf 9953 vdwlem8 17021 oppccatf 17774 lubdm 18408 glbdm 18421 mndpsuppss 18790 dprd2dlem2 20074 dprd2dlem1 20075 dprd2da 20076 ablfac1c 20105 ablfac1eu 20107 ablfaclem2 20120 ablfaclem3 20121 elocv 21703 dmtopon 22944 dfac14 23641 kqtop 23768 symgtgp 24129 eltsms 24156 ressprdsds 24396 minveclem1 25471 isi1f 25722 itg1val 25731 cmvth 26043 cmvthOLD 26044 mvth 26045 lhop2 26068 dvfsumabs 26077 dvfsumrlim2 26087 taylthlem1 26429 taylthlem2 26430 taylthlem2OLD 26431 ulmdvlem1 26457 pige3ALT 26576 relogcn 26694 atandm 26933 atanf 26937 atancn 26993 dmarea 27014 dfarea 27017 efrlim 27026 efrlimOLD 27027 lgamgulmlem2 27087 dchrptlem2 27323 dchrptlem3 27324 dchrisum0 27578 nosupno 27762 nosupdm 27763 nosupbday 27764 nosupres 27766 nosupbnd1lem1 27767 noinfno 27777 noinfdm 27778 incistruhgr 29110 vsfval 30661 ipasslem8 30865 minvecolem1 30902 xppreima2 32667 ofpreima 32681 rmfsupp2 33227 zarclsint 33832 zartopn 33835 zarmxt1 33840 zarcmplem 33841 dmsigagen 34124 measbase 34177 sseqf 34373 ballotlem7 34516 bj-inftyexpitaudisj 37187 bj-inftyexpidisj 37192 bj-elccinfty 37196 bj-minftyccb 37207 fin2so 37593 poimirlem30 37636 poimir 37639 dvtan 37656 itg2addnclem2 37658 ftc1anclem6 37684 totbndbnd 37775 tfsconcatrev 43337 comptiunov2i 43695 lhe4.4ex1a 44324 dvsinax 45868 fourierdlem62 46123 fourierdlem70 46131 fourierdlem71 46132 fourierdlem80 46141 fouriersw 46186 smflimsuplem1 46775 smflimsuplem4 46778 scmsuppss 48215 lincext2 48300 aacllem 49031 |
Copyright terms: Public domain | W3C validator |