| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmpti | Structured version Visualization version GIF version | ||
| Description: Domain of the mapping operation. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fnmpti.1 | ⊢ 𝐵 ∈ V |
| fnmpti.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| dmmpti | ⊢ dom 𝐹 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmpti.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | fnmpti.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | fnmpti 6624 | . 2 ⊢ 𝐹 Fn 𝐴 |
| 4 | 3 | fndmi 6585 | 1 ⊢ dom 𝐹 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5170 dom cdm 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-fun 6483 df-fn 6484 |
| This theorem is referenced by: fvmptex 6943 resfunexg 7149 brtpos2 8162 pwfilem 9202 inlresf 9807 inrresf 9809 vdwlem8 16900 oppccatf 17634 lubdm 18255 glbdm 18268 mndpsuppss 18673 dprd2dlem2 19954 dprd2dlem1 19955 dprd2da 19956 ablfac1c 19985 ablfac1eu 19987 ablfaclem2 20000 ablfaclem3 20001 elocv 21605 dmtopon 22838 dfac14 23533 kqtop 23660 symgtgp 24021 eltsms 24048 ressprdsds 24286 minveclem1 25351 isi1f 25602 itg1val 25611 cmvth 25922 cmvthOLD 25923 mvth 25924 lhop2 25947 dvfsumabs 25956 dvfsumrlim2 25966 taylthlem1 26308 taylthlem2 26309 taylthlem2OLD 26310 ulmdvlem1 26336 pige3ALT 26456 relogcn 26574 atandm 26813 atanf 26817 atancn 26873 dmarea 26894 dfarea 26897 efrlim 26906 efrlimOLD 26907 lgamgulmlem2 26967 dchrptlem2 27203 dchrptlem3 27204 dchrisum0 27458 nosupno 27642 nosupdm 27643 nosupbday 27644 nosupres 27646 nosupbnd1lem1 27647 noinfno 27657 noinfdm 27658 incistruhgr 29057 vsfval 30613 ipasslem8 30817 minvecolem1 30854 xppreima2 32633 ofpreima 32647 rmfsupp2 33205 zarclsint 33885 zartopn 33888 zarmxt1 33893 zarcmplem 33894 dmsigagen 34157 measbase 34210 sseqf 34405 ballotlem7 34549 bj-inftyexpitaudisj 37249 bj-inftyexpidisj 37254 bj-elccinfty 37258 bj-minftyccb 37269 fin2so 37657 poimirlem30 37700 poimir 37703 dvtan 37720 itg2addnclem2 37722 ftc1anclem6 37748 totbndbnd 37839 tfsconcatrev 43451 comptiunov2i 43809 lhe4.4ex1a 44432 dvsinax 46021 fourierdlem62 46276 fourierdlem70 46284 fourierdlem71 46285 fourierdlem80 46294 fouriersw 46339 smflimsuplem1 46928 smflimsuplem4 46931 scmsuppss 48481 lincext2 48566 idfurcl 49209 reldmprcof1 49492 reldmlmd2 49764 reldmcmd2 49765 aacllem 49912 |
| Copyright terms: Public domain | W3C validator |