MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  areass Structured version   Visualization version   GIF version

Theorem areass 26453
Description: A measurable region is a subset of ℝ × ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.)
Assertion
Ref Expression
areass (𝑆 ∈ dom area → 𝑆 ⊆ (ℝ × ℝ))

Proof of Theorem areass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmarea 26451 . 2 (𝑆 ∈ dom area ↔ (𝑆 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝑆 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1))
21simp1bi 1145 1 (𝑆 ∈ dom area → 𝑆 ⊆ (ℝ × ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wral 3061  wss 3947  {csn 4627  cmpt 5230   × cxp 5673  ccnv 5674  dom cdm 5675  cima 5678  cfv 6540  cr 11105  volcvol 24971  𝐿1cibl 25125  areacarea 26449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-fv 6548  df-sum 15629  df-itg 25131  df-area 26450
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator