| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > areass | Structured version Visualization version GIF version | ||
| Description: A measurable region is a subset of ℝ × ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| Ref | Expression |
|---|---|
| areass | ⊢ (𝑆 ∈ dom area → 𝑆 ⊆ (ℝ × ℝ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmarea 26900 | . 2 ⊢ (𝑆 ∈ dom area ↔ (𝑆 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝑆 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1)) | |
| 2 | 1 | simp1bi 1145 | 1 ⊢ (𝑆 ∈ dom area → 𝑆 ⊆ (ℝ × ℝ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3911 {csn 4585 ↦ cmpt 5183 × cxp 5629 ◡ccnv 5630 dom cdm 5631 “ cima 5634 ‘cfv 6499 ℝcr 11043 volcvol 25397 𝐿1cibl 25551 areacarea 26898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 df-sum 15629 df-itg 25557 df-area 26899 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |