| Metamath
Proof Explorer Theorem List (p. 270 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | leibpilem2 26901* | The Leibniz formula for π. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))) & ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))) & ⊢ 𝐴 ∈ V ⇒ ⊢ (seq0( + , 𝐹) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴) | ||
| Theorem | leibpi 26902 | The Leibniz formula for π. This proof depends on three main facts: (1) the series 𝐹 is convergent, because it is an alternating series (iseralt 15699). (2) Using leibpilem2 26901 to rewrite the series as a power series, it is the 𝑥 = 1 special case of the Taylor series for arctan (atantayl2 26898). (3) Although we cannot directly plug 𝑥 = 1 into atantayl2 26898, Abel's theorem (abelth2 26402) says that the limit along any sequence converging to 1, such as 1 − 1 / 𝑛, of the power series converges to the power series extended to 1, and then since arctan is continuous at 1 (atancn 26896) we get the desired result. This is Metamath 100 proof #26. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))) ⇒ ⊢ seq0( + , 𝐹) ⇝ (π / 4) | ||
| Theorem | leibpisum 26903 | The Leibniz formula for π. This version of leibpi 26902 looks nicer but does not assert that the series is convergent so is not as practically useful. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ Σ𝑛 ∈ ℕ0 ((-1↑𝑛) / ((2 · 𝑛) + 1)) = (π / 4) | ||
| Theorem | log2cnv 26904 | Using the Taylor series for arctan(i / 3), produce a rapidly convergent series for log2. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ⇒ ⊢ seq0( + , 𝐹) ⇝ (log‘2) | ||
| Theorem | log2tlbnd 26905* | Bound the error term in the series of log2cnv 26904. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| ⊢ (𝑁 ∈ ℕ0 → ((log‘2) − Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ∈ (0[,](3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))))) | ||
| Theorem | log2ublem1 26906 | Lemma for log2ub 26909. The proof of log2ub 26909, which is simply the evaluation of log2tlbnd 26905 for 𝑁 = 4, takes the form of the addition of five fractions and showing this is less than another fraction. We could just perform exact arithmetic on these fractions, get a large rational number, and just multiply everything to verify the claim, but as anyone who uses decimal numbers for this task knows, it is often better to pick a common denominator 𝑑 (usually a large power of 10) and work with the closest approximations of the form 𝑛 / 𝑑 for some integer 𝑛 instead. It turns out that for our purposes it is sufficient to take 𝑑 = (3↑7) · 5 · 7, which is also nice because it shares many factors in common with the fractions in question. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| ⊢ (((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵 & ⊢ 𝐴 ∈ ℝ & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐶 = (𝐴 + (𝐷 / 𝐸)) & ⊢ (𝐵 + 𝐹) = 𝐺 & ⊢ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹) ⇒ ⊢ (((3↑7) · (5 · 7)) · 𝐶) ≤ 𝐺 | ||
| Theorem | log2ublem2 26907* | Lemma for log2ub 26909. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| ⊢ (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (2 · 𝐵) & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ (𝑁 − 1) = 𝐾 & ⊢ (𝐵 + 𝐹) = 𝐺 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝑀 + 𝑁) = 3 & ⊢ ((5 · 7) · (9↑𝑀)) = (((2 · 𝑁) + 1) · 𝐹) ⇒ ⊢ (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (2 · 𝐺) | ||
| Theorem | log2ublem3 26908 | Lemma for log2ub 26909. In decimal, this is a proof that the first four terms of the series for log2 is less than 53056 / 76545. (Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV, 15-Sep-2021.) |
| ⊢ (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ ;;;;53056 | ||
| Theorem | log2ub 26909 | log2 is less than 253 / 365. If written in decimal, this is because log2 = 0.693147... is less than 253/365 = 0.693151... , so this is a very tight bound, at five decimal places. (Contributed by Mario Carneiro, 7-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
| ⊢ (log‘2) < (;;253 / ;;365) | ||
| Theorem | log2le1 26910 | log2 is less than 1. This is just a weaker form of log2ub 26909 when no tight upper bound is required. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
| ⊢ (log‘2) < 1 | ||
| Theorem | birthdaylem1 26911* | Lemma for birthday 26914. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| ⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} & ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} ⇒ ⊢ (𝑇 ⊆ 𝑆 ∧ 𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅)) | ||
| Theorem | birthdaylem2 26912* | For general 𝑁 and 𝐾, count the fraction of injective functions from 1...𝐾 to 1...𝑁. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} & ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘𝑇) / (♯‘𝑆)) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))))) | ||
| Theorem | birthdaylem3 26913* | For general 𝑁 and 𝐾, upper-bound the fraction of injective functions from 1...𝐾 to 1...𝑁. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| ⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} & ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} ⇒ ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁))) | ||
| Theorem | birthday 26914* | The Birthday Problem. There is a more than even chance that out of 23 people in a room, at least two of them have the same birthday. Mathematically, this is asserting that for 𝐾 = 23 and 𝑁 = 365, fewer than half of the set of all functions from 1...𝐾 to 1...𝑁 are injective. This is Metamath 100 proof #93. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| ⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} & ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} & ⊢ 𝐾 = ;23 & ⊢ 𝑁 = ;;365 ⇒ ⊢ ((♯‘𝑇) / (♯‘𝑆)) < (1 / 2) | ||
| Syntax | carea 26915 | Area of regions in the complex plane. |
| class area | ||
| Definition | df-area 26916* | Define the area of a subset of ℝ × ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ area = (𝑠 ∈ {𝑡 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1)} ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) | ||
| Theorem | dmarea 26917* | The domain of the area function is the set of finitely measurable subsets of ℝ × ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ (𝐴 ∈ dom area ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)) | ||
| Theorem | areambl 26918 | The fibers of a measurable region are finitely measurable subsets of ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ ((𝑆 ∈ dom area ∧ 𝐴 ∈ ℝ) → ((𝑆 “ {𝐴}) ∈ dom vol ∧ (vol‘(𝑆 “ {𝐴})) ∈ ℝ)) | ||
| Theorem | areass 26919 | A measurable region is a subset of ℝ × ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ (𝑆 ∈ dom area → 𝑆 ⊆ (ℝ × ℝ)) | ||
| Theorem | dfarea 26920* | Rewrite df-area 26916 self-referentially. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ area = (𝑠 ∈ dom area ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) | ||
| Theorem | areaf 26921 | Area measurement is a function whose values are nonnegative reals. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ area:dom area⟶(0[,)+∞) | ||
| Theorem | areacl 26922 | The area of a measurable region is a real number. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ (𝑆 ∈ dom area → (area‘𝑆) ∈ ℝ) | ||
| Theorem | areage0 26923 | The area of a measurable region is greater than or equal to zero. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ (𝑆 ∈ dom area → 0 ≤ (area‘𝑆)) | ||
| Theorem | areaval 26924* | The area of a measurable region is greater than or equal to zero. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ (𝑆 ∈ dom area → (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥) | ||
| Theorem | rlimcnp 26925* | Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| ⊢ (𝜑 → 𝐴 ⊆ (0[,)+∞)) & ⊢ (𝜑 → 0 ∈ 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ ℝ+) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ 𝐴 ↔ (1 / 𝑥) ∈ 𝐵)) & ⊢ (𝑥 = 0 → 𝑅 = 𝐶) & ⊢ (𝑥 = (1 / 𝑦) → 𝑅 = 𝑆) & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t 𝐴) ⇒ ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝑅) ∈ ((𝐾 CnP 𝐽)‘0))) | ||
| Theorem | rlimcnp2 26926* | Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| ⊢ (𝜑 → 𝐴 ⊆ (0[,)+∞)) & ⊢ (𝜑 → 0 ∈ 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑆 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (𝑦 ∈ 𝐵 ↔ (1 / 𝑦) ∈ 𝐴)) & ⊢ (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅) & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t 𝐴) ⇒ ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0))) | ||
| Theorem | rlimcnp3 26927* | Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝑆 ∈ ℂ) & ⊢ (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅) & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t (0[,)+∞)) ⇒ ⊢ (𝜑 → ((𝑦 ∈ ℝ+ ↦ 𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0))) | ||
| Theorem | xrlimcnp 26928* | Relate a limit of a real-valued sequence at infinity to the continuity of the corresponding extended real function at +∞. Since any ⇝𝑟 limit can be written in the form on the left side of the implication, this shows that real limits are a special case of topological continuity at a point. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| ⊢ (𝜑 → 𝐴 = (𝐵 ∪ {+∞})) & ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ ℂ) & ⊢ (𝑥 = +∞ → 𝑅 = 𝐶) & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = ((ordTop‘ ≤ ) ↾t 𝐴) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝑅) ⇝𝑟 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞))) | ||
| Theorem | efrlim 26929* | The limit of the sequence (1 + 𝐴 / 𝑘)↑𝑘 is the exponential function. This is often taken as an alternate definition of the exponential function (see also dfef2 26931). (Contributed by Mario Carneiro, 1-Mar-2015.) Avoid ax-mulf 11207. (Revised by GG, 19-Apr-2025.) |
| ⊢ 𝑆 = (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ⇒ ⊢ (𝐴 ∈ ℂ → (𝑘 ∈ ℝ+ ↦ ((1 + (𝐴 / 𝑘))↑𝑐𝑘)) ⇝𝑟 (exp‘𝐴)) | ||
| Theorem | efrlimOLD 26930* | Obsolete version of efrlim 26929 as of 19-Apr-2025. (Contributed by Mario Carneiro, 1-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑆 = (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ⇒ ⊢ (𝐴 ∈ ℂ → (𝑘 ∈ ℝ+ ↦ ((1 + (𝐴 / 𝑘))↑𝑐𝑘)) ⇝𝑟 (exp‘𝐴)) | ||
| Theorem | dfef2 26931* | The limit of the sequence (1 + 𝐴 / 𝑘)↑𝑘 as 𝑘 goes to +∞ is (exp‘𝐴). This is another common definition of e. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = ((1 + (𝐴 / 𝑘))↑𝑘)) ⇒ ⊢ (𝜑 → 𝐹 ⇝ (exp‘𝐴)) | ||
| Theorem | cxplim 26932* | A power to a negative exponent goes to zero as the base becomes large. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Mario Carneiro, 18-May-2016.) |
| ⊢ (𝐴 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ (1 / (𝑛↑𝑐𝐴))) ⇝𝑟 0) | ||
| Theorem | sqrtlim 26933 | The inverse square root function converges to zero. (Contributed by Mario Carneiro, 18-May-2016.) |
| ⊢ (𝑛 ∈ ℝ+ ↦ (1 / (√‘𝑛))) ⇝𝑟 0 | ||
| Theorem | rlimcxp 26934* | Any power to a positive exponent of a converging sequence also converges. (Contributed by Mario Carneiro, 18-Sep-2014.) |
| ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 0) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)) ⇝𝑟 0) | ||
| Theorem | o1cxp 26935* | An eventually bounded function taken to a nonnegative power is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 0 ≤ (ℜ‘𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)) ∈ 𝑂(1)) | ||
| Theorem | cxp2limlem 26936* | A linear factor grows slower than any exponential with base greater than 1. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝑛 ∈ ℝ+ ↦ (𝑛 / (𝐴↑𝑐𝑛))) ⇝𝑟 0) | ||
| Theorem | cxp2lim 26937* | Any power grows slower than any exponential with base greater than 1. (Contributed by Mario Carneiro, 18-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛↑𝑐𝐴) / (𝐵↑𝑐𝑛))) ⇝𝑟 0) | ||
| Theorem | cxploglim 26938* | The logarithm grows slower than any positive power. (Contributed by Mario Carneiro, 18-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛↑𝑐𝐴))) ⇝𝑟 0) | ||
| Theorem | cxploglim2 26939* | Every power of the logarithm grows slower than any positive power. (Contributed by Mario Carneiro, 20-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝑛 ∈ ℝ+ ↦ (((log‘𝑛)↑𝑐𝐴) / (𝑛↑𝑐𝐵))) ⇝𝑟 0) | ||
| Theorem | divsqrtsumlem 26940* | Lemma for divsqrsum 26942 and divsqrtsum2 26943. (Contributed by Mario Carneiro, 18-May-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) ⇒ ⊢ (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹 ⇝𝑟 𝐿 ∧ 𝐴 ∈ ℝ+) → (abs‘((𝐹‘𝐴) − 𝐿)) ≤ (1 / (√‘𝐴)))) | ||
| Theorem | divsqrsumf 26941* | The function 𝐹 used in divsqrsum 26942 is a real function. (Contributed by Mario Carneiro, 12-May-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) ⇒ ⊢ 𝐹:ℝ+⟶ℝ | ||
| Theorem | divsqrsum 26942* | The sum Σ𝑛 ≤ 𝑥(1 / √𝑛) is asymptotic to 2√𝑥 + 𝐿 with a finite limit 𝐿. (In fact, this limit is ζ(1 / 2) ≈ -1.46....) (Contributed by Mario Carneiro, 9-May-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) ⇒ ⊢ 𝐹 ∈ dom ⇝𝑟 | ||
| Theorem | divsqrtsum2 26943* | A bound on the distance of the sum Σ𝑛 ≤ 𝑥(1 / √𝑛) from its asymptotic value 2√𝑥 + 𝐿. (Contributed by Mario Carneiro, 18-May-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) & ⊢ (𝜑 → 𝐹 ⇝𝑟 𝐿) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ+) → (abs‘((𝐹‘𝐴) − 𝐿)) ≤ (1 / (√‘𝐴))) | ||
| Theorem | divsqrtsumo1 26944* | The sum Σ𝑛 ≤ 𝑥(1 / √𝑛) has the asymptotic expansion 2√𝑥 + 𝐿 + 𝑂(1 / √𝑥), for some 𝐿. (Contributed by Mario Carneiro, 10-May-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) & ⊢ (𝜑 → 𝐹 ⇝𝑟 𝐿) ⇒ ⊢ (𝜑 → (𝑦 ∈ ℝ+ ↦ (((𝐹‘𝑦) − 𝐿) · (√‘𝑦))) ∈ 𝑂(1)) | ||
| Theorem | cvxcl 26945* | Closure of a 0-1 linear combination in a convex set. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥[,]𝑦) ⊆ 𝐷) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷) | ||
| Theorem | scvxcvx 26946* | A strictly convex function is convex. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) ≤ ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌)))) | ||
| Theorem | jensenlem1 26947* | Lemma for jensen 26949. (Contributed by Mario Carneiro, 4-Jun-2016.) |
| ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑇:𝐴⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑋:𝐴⟶𝐷) & ⊢ (𝜑 → 0 < (ℂfld Σg 𝑇)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) & ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐵) & ⊢ (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴) & ⊢ 𝑆 = (ℂfld Σg (𝑇 ↾ 𝐵)) & ⊢ 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) ⇒ ⊢ (𝜑 → 𝐿 = (𝑆 + (𝑇‘𝑧))) | ||
| Theorem | jensenlem2 26948* | Lemma for jensen 26949. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑇:𝐴⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑋:𝐴⟶𝐷) & ⊢ (𝜑 → 0 < (ℂfld Σg 𝑇)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) & ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐵) & ⊢ (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴) & ⊢ 𝑆 = (ℂfld Σg (𝑇 ↾ 𝐵)) & ⊢ 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) & ⊢ (𝜑 → 𝑆 ∈ ℝ+) & ⊢ (𝜑 → ((ℂfld Σg ((𝑇 ∘f · 𝑋) ↾ 𝐵)) / 𝑆) ∈ 𝐷) & ⊢ (𝜑 → (𝐹‘((ℂfld Σg ((𝑇 ∘f · 𝑋) ↾ 𝐵)) / 𝑆)) ≤ ((ℂfld Σg ((𝑇 ∘f · (𝐹 ∘ 𝑋)) ↾ 𝐵)) / 𝑆)) ⇒ ⊢ (𝜑 → (((ℂfld Σg ((𝑇 ∘f · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿) ∈ 𝐷 ∧ (𝐹‘((ℂfld Σg ((𝑇 ∘f · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿)) ≤ ((ℂfld Σg ((𝑇 ∘f · (𝐹 ∘ 𝑋)) ↾ (𝐵 ∪ {𝑧}))) / 𝐿))) | ||
| Theorem | jensen 26949* | Jensen's inequality, a finite extension of the definition of convexity (the last hypothesis). (Contributed by Mario Carneiro, 21-Jun-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑇:𝐴⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑋:𝐴⟶𝐷) & ⊢ (𝜑 → 0 < (ℂfld Σg 𝑇)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) ⇒ ⊢ (𝜑 → (((ℂfld Σg (𝑇 ∘f · 𝑋)) / (ℂfld Σg 𝑇)) ∈ 𝐷 ∧ (𝐹‘((ℂfld Σg (𝑇 ∘f · 𝑋)) / (ℂfld Σg 𝑇))) ≤ ((ℂfld Σg (𝑇 ∘f · (𝐹 ∘ 𝑋))) / (ℂfld Σg 𝑇)))) | ||
| Theorem | amgmlem 26950 | Lemma for amgm 26951. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ 𝑀 = (mulGrp‘ℂfld) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ+) ⇒ ⊢ (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴))) | ||
| Theorem | amgm 26951 | Inequality of arithmetic and geometric means. Here (𝑀 Σg 𝐹) calculates the group sum within the multiplicative monoid of the complex numbers (or in other words, it multiplies the elements 𝐹(𝑥), 𝑥 ∈ 𝐴 together), and (ℂfld Σg 𝐹) calculates the group sum in the additive group (i.e. the sum of the elements). This is Metamath 100 proof #38. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑀 = (mulGrp‘ℂfld) ⇒ ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴))) | ||
| Syntax | cem 26952 | The Euler-Mascheroni constant. (The label abbreviates Euler-Mascheroni.) |
| class γ | ||
| Definition | df-em 26953 | Define the Euler-Mascheroni constant, γ = 0.57721.... This is the limit of the series Σ𝑘 ∈ (1...𝑚)(1 / 𝑘) − (log‘𝑚), with a proof that the limit exists in emcl 26963. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ γ = Σ𝑘 ∈ ℕ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) | ||
| Theorem | logdifbnd 26954 | Bound on the difference of logs. (Contributed by Mario Carneiro, 23-May-2016.) |
| ⊢ (𝐴 ∈ ℝ+ → ((log‘(𝐴 + 1)) − (log‘𝐴)) ≤ (1 / 𝐴)) | ||
| Theorem | logdiflbnd 26955 | Lower bound on the difference of logs. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝐴 ∈ ℝ+ → (1 / (𝐴 + 1)) ≤ ((log‘(𝐴 + 1)) − (log‘𝐴))) | ||
| Theorem | emcllem1 26956* | Lemma for emcl 26963. The series 𝐹 and 𝐺 are sequences of real numbers that approach γ from above and below, respectively. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) ⇒ ⊢ (𝐹:ℕ⟶ℝ ∧ 𝐺:ℕ⟶ℝ) | ||
| Theorem | emcllem2 26957* | Lemma for emcl 26963. 𝐹 is increasing, and 𝐺 is decreasing. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) ⇒ ⊢ (𝑁 ∈ ℕ → ((𝐹‘(𝑁 + 1)) ≤ (𝐹‘𝑁) ∧ (𝐺‘𝑁) ≤ (𝐺‘(𝑁 + 1)))) | ||
| Theorem | emcllem3 26958* | Lemma for emcl 26963. The function 𝐻 is the difference between 𝐹 and 𝐺. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝐻‘𝑁) = ((𝐹‘𝑁) − (𝐺‘𝑁))) | ||
| Theorem | emcllem4 26959* | Lemma for emcl 26963. The difference between series 𝐹 and 𝐺 tends to zero. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) ⇒ ⊢ 𝐻 ⇝ 0 | ||
| Theorem | emcllem5 26960* | Lemma for emcl 26963. The partial sums of the series 𝑇, which is used in Definition df-em 26953, is in fact the same as 𝐺. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛))))) ⇒ ⊢ 𝐺 = seq1( + , 𝑇) | ||
| Theorem | emcllem6 26961* | Lemma for emcl 26963. By the previous lemmas, 𝐹 and 𝐺 must approach a common limit, which is γ by definition. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛))))) ⇒ ⊢ (𝐹 ⇝ γ ∧ 𝐺 ⇝ γ) | ||
| Theorem | emcllem7 26962* | Lemma for emcl 26963 and harmonicbnd 26964. Derive bounds on γ as 𝐹(1) and 𝐺(1). (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 9-Apr-2016.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛))))) ⇒ ⊢ (γ ∈ ((1 − (log‘2))[,]1) ∧ 𝐹:ℕ⟶(γ[,]1) ∧ 𝐺:ℕ⟶((1 − (log‘2))[,]γ)) | ||
| Theorem | emcl 26963 | Closure and bounds for the Euler-Mascheroni constant. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ γ ∈ ((1 − (log‘2))[,]1) | ||
| Theorem | harmonicbnd 26964* | A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 9-Apr-2016.) |
| ⊢ (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ∈ (γ[,]1)) | ||
| Theorem | harmonicbnd2 26965* | A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ ((1 − (log‘2))[,]γ)) | ||
| Theorem | emre 26966 | The Euler-Mascheroni constant is a real number. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ γ ∈ ℝ | ||
| Theorem | emgt0 26967 | The Euler-Mascheroni constant is positive. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ 0 < γ | ||
| Theorem | harmonicbnd3 26968* | A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ (𝑁 ∈ ℕ0 → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ (0[,]γ)) | ||
| Theorem | harmoniclbnd 26969* | A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ≤ Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚)) | ||
| Theorem | harmonicubnd 26970* | A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ≤ ((log‘𝐴) + 1)) | ||
| Theorem | harmonicbnd4 26971* | The asymptotic behavior of Σ𝑚 ≤ 𝐴, 1 / 𝑚 = log𝐴 + γ + 𝑂(1 / 𝐴). (Contributed by Mario Carneiro, 14-May-2016.) |
| ⊢ (𝐴 ∈ ℝ+ → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴)) | ||
| Theorem | fsumharmonic 26972* | Bound a finite sum based on the harmonic series, where the "strong" bound 𝐶 only applies asymptotically, and there is a "weak" bound 𝑅 for the remaining values. (Contributed by Mario Carneiro, 18-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → (𝑇 ∈ ℝ ∧ 1 ≤ 𝑇)) & ⊢ (𝜑 → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 0 ≤ 𝐶) & ⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑇 ≤ (𝐴 / 𝑛)) → (abs‘𝐵) ≤ (𝐶 · 𝑛)) & ⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝐴 / 𝑛) < 𝑇) → (abs‘𝐵) ≤ 𝑅) ⇒ ⊢ (𝜑 → (abs‘Σ𝑛 ∈ (1...(⌊‘𝐴))(𝐵 / 𝑛)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶 + (𝑅 · ((log‘𝑇) + 1)))) | ||
| Syntax | czeta 26973 | The Riemann zeta function. |
| class ζ | ||
| Definition | df-zeta 26974* | Define the Riemann zeta function. This definition uses a series expansion of the alternating zeta function ~? zetaalt that is convergent everywhere except 1, but going from the alternating zeta function to the regular zeta function requires dividing by 1 − 2↑(1 − 𝑠), which has zeroes other than 1. To extract the correct value of the zeta function at these points, we extend the divided alternating zeta function by continuity. (Contributed by Mario Carneiro, 18-Jul-2014.) |
| ⊢ ζ = (℩𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓‘𝑠)) = Σ𝑛 ∈ ℕ0 (Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))) | ||
| Theorem | zetacvg 26975* | The zeta series is convergent. (Contributed by Mario Carneiro, 18-Jul-2014.) |
| ⊢ (𝜑 → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 1 < (ℜ‘𝑆)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (𝑘↑𝑐-𝑆)) ⇒ ⊢ (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ ) | ||
| Syntax | clgam 26976 | Logarithm of the Gamma function. |
| class log Γ | ||
| Syntax | cgam 26977 | The Gamma function. |
| class Γ | ||
| Syntax | cigam 26978 | The inverse Gamma function. |
| class 1/Γ | ||
| Definition | df-lgam 26979* | Define the log-Gamma function. We can work with this form of the gamma function a bit easier than the equivalent expression for the gamma function itself, and moreover this function is not actually equal to log(Γ(𝑥)) because the branch cuts are placed differently (we do have exp(log Γ(𝑥)) = Γ(𝑥), though). This definition is attributed to Euler, and unlike the usual integral definition is defined on the entire complex plane except the nonpositive integers ℤ ∖ ℕ, where the function has simple poles. (Contributed by Mario Carneiro, 12-Jul-2014.) |
| ⊢ log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧))) | ||
| Definition | df-gam 26980 | Define the Gamma function. See df-lgam 26979 for more information about the reason for this definition in terms of the log-gamma function. (Contributed by Mario Carneiro, 12-Jul-2014.) |
| ⊢ Γ = (exp ∘ log Γ) | ||
| Definition | df-igam 26981 | Define the inverse Gamma function, which is defined everywhere, unlike the Gamma function itself. (Contributed by Mario Carneiro, 16-Jul-2017.) |
| ⊢ 1/Γ = (𝑥 ∈ ℂ ↦ if(𝑥 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝑥)))) | ||
| Theorem | eldmgm 26982 | Elementhood in the set of non-nonpositive integers. (Contributed by Mario Carneiro, 12-Jul-2014.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) | ||
| Theorem | dmgmaddn0 26983 | If 𝐴 is not a nonpositive integer, then 𝐴 + 𝑁 is nonzero for any nonnegative integer 𝑁. (Contributed by Mario Carneiro, 12-Jul-2014.) |
| ⊢ ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → (𝐴 + 𝑁) ≠ 0) | ||
| Theorem | dmlogdmgm 26984 | If 𝐴 is in the continuous domain of the logarithm, then it is in the domain of the Gamma function. (Contributed by Mario Carneiro, 8-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) | ||
| Theorem | rpdmgm 26985 | A positive real number is in the domain of the Gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) | ||
| Theorem | dmgmn0 26986 | If 𝐴 is not a nonpositive integer, then 𝐴 is nonzero. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → 𝐴 ≠ 0) | ||
| Theorem | dmgmaddnn0 26987 | If 𝐴 is not a nonpositive integer and 𝑁 is a nonnegative integer, then 𝐴 + 𝑁 is also not a nonpositive integer. (Contributed by Mario Carneiro, 6-Jul-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 + 𝑁) ∈ (ℂ ∖ (ℤ ∖ ℕ))) | ||
| Theorem | dmgmdivn0 26988 | Lemma for lgamf 27002. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝐴 / 𝑀) + 1) ≠ 0) | ||
| Theorem | lgamgulmlem1 26989* | Lemma for lgamgulm 26995. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} ⇒ ⊢ (𝜑 → 𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ))) | ||
| Theorem | lgamgulmlem2 26990* | Lemma for lgamgulm 26995. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → (2 · 𝑅) ≤ 𝑁) ⇒ ⊢ (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((1 / (𝑁 − 𝑅)) − (1 / 𝑁)))) | ||
| Theorem | lgamgulmlem3 26991* | Lemma for lgamgulm 26995. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → (2 · 𝑅) ≤ 𝑁) ⇒ ⊢ (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2)))) | ||
| Theorem | lgamgulmlem4 26992* | Lemma for lgamgulm 26995. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) & ⊢ 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) ⇒ ⊢ (𝜑 → seq1( + , 𝑇) ∈ dom ⇝ ) | ||
| Theorem | lgamgulmlem5 26993* | Lemma for lgamgulm 26995. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) & ⊢ 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) ⇒ ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈)) → (abs‘((𝐺‘𝑛)‘𝑦)) ≤ (𝑇‘𝑛)) | ||
| Theorem | lgamgulmlem6 26994* | The series 𝐺 is uniformly convergent on the compact region 𝑈, which describes a circle of radius 𝑅 with holes of size 1 / 𝑅 around the poles of the gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) & ⊢ 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) ⇒ ⊢ (𝜑 → (seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢‘𝑈) ∧ (seq1( ∘f + , 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ 𝑂) → ∃𝑟 ∈ ℝ ∀𝑧 ∈ 𝑈 (abs‘𝑂) ≤ 𝑟))) | ||
| Theorem | lgamgulm 26995* | The series 𝐺 is uniformly convergent on the compact region 𝑈, which describes a circle of radius 𝑅 with holes of size 1 / 𝑅 around the poles of the gamma function. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ⇒ ⊢ (𝜑 → seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢‘𝑈)) | ||
| Theorem | lgamgulm2 26996* | Rewrite the limit of the sequence 𝐺 in terms of the log-Gamma function. (Contributed by Mario Carneiro, 6-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ⇒ ⊢ (𝜑 → (∀𝑧 ∈ 𝑈 (log Γ‘𝑧) ∈ ℂ ∧ seq1( ∘f + , 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))) | ||
| Theorem | lgambdd 26997* | The log-Gamma function is bounded on the region 𝑈. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℝ ∀𝑧 ∈ 𝑈 (abs‘(log Γ‘𝑧)) ≤ 𝑟) | ||
| Theorem | lgamucov 26998* | The 𝑈 regions used in the proof of lgamgulm 26995 have interiors which cover the entire domain of the Gamma function. (Contributed by Mario Carneiro, 6-Jul-2017.) |
| ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) & ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℕ 𝐴 ∈ ((int‘𝐽)‘𝑈)) | ||
| Theorem | lgamucov2 26999* | The 𝑈 regions used in the proof of lgamgulm 26995 have interiors which cover the entire domain of the Gamma function. (Contributed by Mario Carneiro, 8-Jul-2017.) |
| ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℕ 𝐴 ∈ 𝑈) | ||
| Theorem | lgamcvglem 27000* | Lemma for lgamf 27002 and lgamcvg 27014. (Contributed by Mario Carneiro, 8-Jul-2017.) |
| ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) ⇒ ⊢ (𝜑 → ((log Γ‘𝐴) ∈ ℂ ∧ seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |