Home | Metamath
Proof Explorer Theorem List (p. 270 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | tglinethru 26901 | If 𝐴 is a line containing two distinct points 𝑃 and 𝑄, then 𝐴 is the line through 𝑃 and 𝑄. Theorem 6.18 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 25-May-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝑄 ∈ 𝐵) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = (𝑃𝐿𝑄)) | ||
Theorem | tghilberti1 26902* | There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝑄 ∈ 𝐵) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) | ||
Theorem | tghilberti2 26903* | There is at most one line through any two distinct points. Hilbert's axiom I.2 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝑄 ∈ 𝐵) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) ⇒ ⊢ (𝜑 → ∃*𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) | ||
Theorem | tglinethrueu 26904* | There is a unique line going through any two distinct points. Theorem 6.19 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 25-May-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝑄 ∈ 𝐵) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) | ||
Theorem | tglnne0 26905 | A line 𝐴 has at least one point. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) ⇒ ⊢ (𝜑 → 𝐴 ≠ ∅) | ||
Theorem | tglnpt2 26906* | Find a second point on a line. (Contributed by Thierry Arnoux, 18-Oct-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 𝑋 ≠ 𝑦) | ||
Theorem | tglineintmo 26907* | Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 25-May-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | ||
Theorem | tglineineq 26908 | Two distinct lines intersect in at most one point, variation. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 6-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) & ⊢ (𝜑 → 𝑌 ∈ (𝐴 ∩ 𝐵)) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
Theorem | tglineneq 26909 | Given three non-colinear points, build two different lines. (Contributed by Thierry Arnoux, 6-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ⇒ ⊢ (𝜑 → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷)) | ||
Theorem | tglineinteq 26910 | Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 6-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) & ⊢ (𝜑 → 𝑋 ∈ (𝐴𝐿𝐵)) & ⊢ (𝜑 → 𝑌 ∈ (𝐴𝐿𝐵)) & ⊢ (𝜑 → 𝑋 ∈ (𝐶𝐿𝐷)) & ⊢ (𝜑 → 𝑌 ∈ (𝐶𝐿𝐷)) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
Theorem | ncolncol 26911 | Deduce non-colinearity from non-colinearity and colinearity. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) & ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐿𝐵)) & ⊢ (𝜑 → 𝐷 ≠ 𝐵) ⇒ ⊢ (𝜑 → ¬ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) | ||
Theorem | coltr 26912 | A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) & ⊢ (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) ⇒ ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) | ||
Theorem | coltr3 26913 | A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) & ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐼𝐶)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (𝐵𝐿𝐶)) | ||
Theorem | colline 26914* | Three points are colinear iff there is a line through all three of them. Theorem 6.23 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 28-May-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 2 ≤ (♯‘𝑃)) ⇒ ⊢ (𝜑 → ((𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍) ↔ ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎))) | ||
Theorem | tglowdim2l 26915* | Reformulation of the lower dimension axiom for dimension two. There exist three non-colinear points. Theorem 6.24 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 30-May-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ¬ (𝑐 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏)) | ||
Theorem | tglowdim2ln 26916* | There is always one point outside of any line. Theorem 6.25 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 16-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ 𝑃 ¬ 𝑐 ∈ (𝐴𝐿𝐵)) | ||
Syntax | cmir 26917 | Declare the constant for the point inversion function. |
class pInvG | ||
Definition | df-mir 26918* | Define the point inversion ("mirror") function. Definition 7.5 of [Schwabhauser] p. 49. See mirval 26920 and ismir 26924. (Contributed by Thierry Arnoux, 30-May-2019.) |
⊢ pInvG = (𝑔 ∈ V ↦ (𝑚 ∈ (Base‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (℩𝑏 ∈ (Base‘𝑔)((𝑚(dist‘𝑔)𝑏) = (𝑚(dist‘𝑔)𝑎) ∧ 𝑚 ∈ (𝑏(Itv‘𝑔)𝑎)))))) | ||
Theorem | mirreu3 26919* | Existential uniqueness of the mirror point. Theorem 7.8 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝑀 ∈ 𝑃) ⇒ ⊢ (𝜑 → ∃!𝑏 ∈ 𝑃 ((𝑀 − 𝑏) = (𝑀 − 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴))) | ||
Theorem | mirval 26920* | Value of the point inversion function 𝑆. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝑆‘𝐴) = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) | ||
Theorem | mirfv 26921* | Value of the point inversion function 𝑀. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝑀‘𝐵) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) | ||
Theorem | mircgr 26922 | Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵)) | ||
Theorem | mirbtwn 26923 | Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)) | ||
Theorem | ismir 26924 | Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐴 − 𝐵)) & ⊢ (𝜑 → 𝐴 ∈ (𝐶𝐼𝐵)) ⇒ ⊢ (𝜑 → 𝐶 = (𝑀‘𝐵)) | ||
Theorem | mirf 26925 | Point inversion as function. (Contributed by Thierry Arnoux, 30-May-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) ⇒ ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) | ||
Theorem | mircl 26926 | Closure of the point inversion function. (Contributed by Thierry Arnoux, 20-Oct-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝑀‘𝑋) ∈ 𝑃) | ||
Theorem | mirmir 26927 | The point inversion function is an involution. Theorem 7.7 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝑀‘(𝑀‘𝐵)) = 𝐵) | ||
Theorem | mircom 26928 | Variation on mirmir 26927. (Contributed by Thierry Arnoux, 10-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → (𝑀‘𝐵) = 𝐶) ⇒ ⊢ (𝜑 → (𝑀‘𝐶) = 𝐵) | ||
Theorem | mirreu 26929* | Any point has a unique antecedent through point inversion. Theorem 7.8 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → ∃!𝑎 ∈ 𝑃 (𝑀‘𝑎) = 𝐵) | ||
Theorem | mireq 26930 | Equality deduction for point inversion. Theorem 7.9 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 30-May-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → (𝑀‘𝐵) = (𝑀‘𝐶)) ⇒ ⊢ (𝜑 → 𝐵 = 𝐶) | ||
Theorem | mirinv 26931 | The only invariant point of a point inversion Theorem 7.3 of [Schwabhauser] p. 49, Theorem 7.10 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → ((𝑀‘𝐵) = 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | mirne 26932 | Mirror of non-center point cannot be the center point. (Contributed by Thierry Arnoux, 27-Sep-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ≠ 𝐴) ⇒ ⊢ (𝜑 → (𝑀‘𝐵) ≠ 𝐴) | ||
Theorem | mircinv 26933 | The center point is invariant of a point inversion. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) = 𝐴) | ||
Theorem | mirf1o 26934 | The point inversion function 𝑀 is a bijection. Theorem 7.11 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 6-Jun-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) ⇒ ⊢ (𝜑 → 𝑀:𝑃–1-1-onto→𝑃) | ||
Theorem | miriso 26935 | The point inversion function is an isometry, i.e. it is conserves congruence. Because it is also a bijection, it is also a motion. Theorem 7.13 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 6-Jun-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) ⇒ ⊢ (𝜑 → ((𝑀‘𝑋) − (𝑀‘𝑌)) = (𝑋 − 𝑌)) | ||
Theorem | mirbtwni 26936 | Point inversion preserves betweenness, first half of Theorem 7.15 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 9-Jun-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑍)) ⇒ ⊢ (𝜑 → (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) | ||
Theorem | mirbtwnb 26937 | Point inversion preserves betweenness. Theorem 7.15 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 9-Jun-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ↔ (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍)))) | ||
Theorem | mircgrs 26938 | Point inversion preserves congruence. Theorem 7.16 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑇 ∈ 𝑃) & ⊢ (𝜑 → (𝑋 − 𝑌) = (𝑍 − 𝑇)) ⇒ ⊢ (𝜑 → ((𝑀‘𝑋) − (𝑀‘𝑌)) = ((𝑀‘𝑍) − (𝑀‘𝑇))) | ||
Theorem | mirmir2 26939 | Point inversion of a point inversion through another point. (Contributed by Thierry Arnoux, 3-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝑀‘((𝑆‘𝑌)‘𝑋)) = ((𝑆‘(𝑀‘𝑌))‘(𝑀‘𝑋))) | ||
Theorem | mirmot 26940 | Point investion is a motion of the geometric space. Theorem 7.14 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) ⇒ ⊢ (𝜑 → 𝑀 ∈ (𝐺Ismt𝐺)) | ||
Theorem | mirln 26941 | If two points are on the same line, so is the mirror point of one through the other. (Contributed by Thierry Arnoux, 21-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝐷) | ||
Theorem | mirln2 26942 | If a point and its mirror point are both on the same line, so is the center of the point inversion. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝐷) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐷) | ||
Theorem | mirconn 26943 | Point inversion of connectedness. (Contributed by Thierry Arnoux, 2-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → (𝑋 ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼𝑋))) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝑋𝐼(𝑀‘𝑌))) | ||
Theorem | mirhl 26944 | If two points 𝑋 and 𝑌 are on the same half-line from 𝑍, the same applies to the mirror points. (Contributed by Thierry Arnoux, 21-Feb-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑋(𝐾‘𝑍)𝑌) ⇒ ⊢ (𝜑 → (𝑀‘𝑋)(𝐾‘(𝑀‘𝑍))(𝑀‘𝑌)) | ||
Theorem | mirbtwnhl 26945 | If the center of the point inversion 𝐴 is between two points 𝑋 and 𝑌, then the half lines are mirrored. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ≠ 𝐴) & ⊢ (𝜑 → 𝑌 ≠ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ (𝑋𝐼𝑌)) ⇒ ⊢ (𝜑 → (𝑍(𝐾‘𝐴)𝑋 ↔ (𝑀‘𝑍)(𝐾‘𝐴)𝑌)) | ||
Theorem | mirhl2 26946 | Deduce half-line relation from mirror point. (Contributed by Thierry Arnoux, 8-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ≠ 𝐴) & ⊢ (𝜑 → 𝑌 ≠ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ (𝑋𝐼(𝑀‘𝑌))) ⇒ ⊢ (𝜑 → 𝑋(𝐾‘𝐴)𝑌) | ||
Theorem | mircgrextend 26947 | Link congruence over a pair of mirror points. cf tgcgrextend 26750. (Contributed by Thierry Arnoux, 4-Oct-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ 𝑀 = (𝑆‘𝐵) & ⊢ 𝑁 = (𝑆‘𝑌) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝑋 − 𝑌)) ⇒ ⊢ (𝜑 → (𝐴 − (𝑀‘𝐴)) = (𝑋 − (𝑁‘𝑋))) | ||
Theorem | mirtrcgr 26948 | Point inversion of one point of a triangle around another point preserves triangle congruence. (Contributed by Thierry Arnoux, 4-Oct-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ 𝑀 = (𝑆‘𝐵) & ⊢ 𝑁 = (𝑆‘𝑌) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝑋𝑌𝑍”〉) ⇒ ⊢ (𝜑 → 〈“(𝑀‘𝐴)𝐵𝐶”〉 ∼ 〈“(𝑁‘𝑋)𝑌𝑍”〉) | ||
Theorem | mirauto 26949 | Point inversion preserves point inversion. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝑇) & ⊢ 𝑋 = (𝑀‘𝐴) & ⊢ 𝑌 = (𝑀‘𝐵) & ⊢ 𝑍 = (𝑀‘𝐶) & ⊢ (𝜑 → 𝑇 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → ((𝑆‘𝐴)‘𝐵) = 𝐶) ⇒ ⊢ (𝜑 → ((𝑆‘𝑋)‘𝑌) = 𝑍) | ||
Theorem | miduniq 26950 | Uniqueness of the middle point, expressed with point inversion. Theorem 7.17 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → ((𝑆‘𝐴)‘𝑋) = 𝑌) & ⊢ (𝜑 → ((𝑆‘𝐵)‘𝑋) = 𝑌) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | miduniq1 26951 | Uniqueness of the middle point, expressed with point inversion. Theorem 7.18 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → ((𝑆‘𝐴)‘𝑋) = ((𝑆‘𝐵)‘𝑋)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | miduniq2 26952 | If two point inversions commute, they are identical. Theorem 7.19 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → ((𝑆‘𝐴)‘((𝑆‘𝐵)‘𝑋)) = ((𝑆‘𝐵)‘((𝑆‘𝐴)‘𝑋))) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | colmid 26953 | Colinearity and equidistance implies midpoint. Theorem 7.20 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝑋) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → (𝑋 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) & ⊢ (𝜑 → (𝑋 − 𝐴) = (𝑋 − 𝐵)) ⇒ ⊢ (𝜑 → (𝐵 = (𝑀‘𝐴) ∨ 𝐴 = 𝐵)) | ||
Theorem | symquadlem 26954 | Lemma of the symetrial quadrilateral. The diagonals of quadrilaterals with congruent opposing sides intersect at their middle point. In Euclidean geometry, such quadrilaterals are called parallelograms, as opposing sides are parallel. However, this is not necessarily true in the case of absolute geometry. Lemma 7.21 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 6-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝑋) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) & ⊢ (𝜑 → 𝐵 ≠ 𝐷) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) & ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐷 − 𝐴)) & ⊢ (𝜑 → (𝑋 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) & ⊢ (𝜑 → (𝑋 ∈ (𝐵𝐿𝐷) ∨ 𝐵 = 𝐷)) ⇒ ⊢ (𝜑 → 𝐴 = (𝑀‘𝐶)) | ||
Theorem | krippenlem 26955 | Lemma for krippen 26956. We can assume krippen.7 "without loss of generality". (Contributed by Thierry Arnoux, 12-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝑋) & ⊢ 𝑁 = (𝑆‘𝑌) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐸)) & ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐹)) & ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐶 − 𝐵)) & ⊢ (𝜑 → (𝐶 − 𝐸) = (𝐶 − 𝐹)) & ⊢ (𝜑 → 𝐵 = (𝑀‘𝐴)) & ⊢ (𝜑 → 𝐹 = (𝑁‘𝐸)) & ⊢ ≤ = (≤G‘𝐺) & ⊢ (𝜑 → (𝐶 − 𝐴) ≤ (𝐶 − 𝐸)) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝑋𝐼𝑌)) | ||
Theorem | krippen 26956 | Krippenlemma (German for crib's lemma) Lemma 7.22 of [Schwabhauser] p. 53. proven by Gupta 1965 as Theorem 3.45. (Contributed by Thierry Arnoux, 12-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝑋) & ⊢ 𝑁 = (𝑆‘𝑌) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐸)) & ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐹)) & ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐶 − 𝐵)) & ⊢ (𝜑 → (𝐶 − 𝐸) = (𝐶 − 𝐹)) & ⊢ (𝜑 → 𝐵 = (𝑀‘𝐴)) & ⊢ (𝜑 → 𝐹 = (𝑁‘𝐸)) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝑋𝐼𝑌)) | ||
Theorem | midexlem 26957* | Lemma for the existence of a middle point. Lemma 7.25 of [Schwabhauser] p. 55. This proof of the existence of a midpoint requires the existence of a third point 𝐶 equidistant to 𝐴 and 𝐵 This condition will be removed later. Because the operation notation (𝐴(midG‘𝐺)𝐵) for a midpoint implies its uniqueness, it cannot be used until uniqueness is proven, and until then, an equivalent mirror point notation 𝐵 = (𝑀‘𝐴) has to be used. See mideu 27003 for the existence and uniqueness of the midpoint. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝑥) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐶 − 𝐵)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 𝐵 = (𝑀‘𝐴)) | ||
Syntax | crag 26958 | Declare the constant for the class of right angles. |
class ∟G | ||
Definition | df-rag 26959* | Define the class of right angles. Definition 8.1 of [Schwabhauser] p. 57. See israg 26962. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
⊢ ∟G = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Base‘𝑔) ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))))}) | ||
Syntax | cperpg 26960 | Declare the constant for the perpendicular relation. |
class ⟂G | ||
Definition | df-perpg 26961* | Define the "perpendicular" relation. Definition 8.11 of [Schwabhauser] p. 59. See isperp 26977. (Contributed by Thierry Arnoux, 8-Sep-2019.) |
⊢ ⟂G = (𝑔 ∈ V ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔))}) | ||
Theorem | israg 26962 | Property for 3 points A, B, C to form a right angle. Definition 8.1 of [Schwabhauser] p. 57. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) ⇒ ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶)))) | ||
Theorem | ragcom 26963 | Commutative rule for right angles. Theorem 8.2 of [Schwabhauser] p. 57. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) ⇒ ⊢ (𝜑 → 〈“𝐶𝐵𝐴”〉 ∈ (∟G‘𝐺)) | ||
Theorem | ragcol 26964 | The right angle property is independent of the choice of point on one side. Theorem 8.3 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → (𝐴 ∈ (𝐵𝐿𝐷) ∨ 𝐵 = 𝐷)) ⇒ ⊢ (𝜑 → 〈“𝐷𝐵𝐶”〉 ∈ (∟G‘𝐺)) | ||
Theorem | ragmir 26965 | Right angle property is preserved by point inversion. Theorem 8.4 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵((𝑆‘𝐵)‘𝐶)”〉 ∈ (∟G‘𝐺)) | ||
Theorem | mirrag 26966 | Right angle is conserved by point inversion. (Contributed by Thierry Arnoux, 3-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) & ⊢ 𝑀 = (𝑆‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) ⇒ ⊢ (𝜑 → 〈“(𝑀‘𝐴)(𝑀‘𝐵)(𝑀‘𝐶)”〉 ∈ (∟G‘𝐺)) | ||
Theorem | ragtrivb 26967 | Trivial right angle. Theorem 8.5 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐵”〉 ∈ (∟G‘𝐺)) | ||
Theorem | ragflat2 26968 | Deduce equality from two right angles. Theorem 8.6 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 3-Sep-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → 〈“𝐷𝐵𝐶”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) ⇒ ⊢ (𝜑 → 𝐵 = 𝐶) | ||
Theorem | ragflat 26969 | Deduce equality from two right angles. Theorem 8.7 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 3-Sep-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → 〈“𝐴𝐶𝐵”〉 ∈ (∟G‘𝐺)) ⇒ ⊢ (𝜑 → 𝐵 = 𝐶) | ||
Theorem | ragtriva 26970 | Trivial right angle. Theorem 8.8 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 3-Sep-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐴”〉 ∈ (∟G‘𝐺)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | ragflat3 26971 | Right angle and colinearity. Theorem 8.9 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 4-Sep-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ∨ 𝐶 = 𝐵)) | ||
Theorem | ragcgr 26972 | Right angle and colinearity. Theorem 8.10 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 4-Sep-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) ⇒ ⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉 ∈ (∟G‘𝐺)) | ||
Theorem | motrag 26973 | Right angles are preserved by motions. (Contributed by Thierry Arnoux, 16-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) ⇒ ⊢ (𝜑 → 〈“(𝐹‘𝐴)(𝐹‘𝐵)(𝐹‘𝐶)”〉 ∈ (∟G‘𝐺)) | ||
Theorem | ragncol 26974 | Right angle implies non-colinearity. A consequence of theorem 8.9 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐶 ≠ 𝐵) ⇒ ⊢ (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) | ||
Theorem | perpln1 26975 | Derive a line from perpendicularity. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴(⟂G‘𝐺)𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | ||
Theorem | perpln2 26976 | Derive a line from perpendicularity. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴(⟂G‘𝐺)𝐵) ⇒ ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) | ||
Theorem | isperp 26977* | Property for 2 lines A, B to be perpendicular. Item (ii) of definition 8.11 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) ⇒ ⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) | ||
Theorem | perpcom 26978 | The "perpendicular" relation commutes. Theorem 8.12 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴(⟂G‘𝐺)𝐵) ⇒ ⊢ (𝜑 → 𝐵(⟂G‘𝐺)𝐴) | ||
Theorem | perpneq 26979 | Two perpendicular lines are different. Theorem 8.14 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 18-Oct-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴(⟂G‘𝐺)𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) | ||
Theorem | isperp2 26980* | Property for 2 lines A, B, intersecting at a point X to be perpendicular. Item (i) of definition 8.13 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) & ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) ⇒ ⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) | ||
Theorem | isperp2d 26981 | One direction of isperp2 26980. (Contributed by Thierry Arnoux, 10-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) & ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) & ⊢ (𝜑 → 𝑈 ∈ 𝐴) & ⊢ (𝜑 → 𝑉 ∈ 𝐵) & ⊢ (𝜑 → 𝐴(⟂G‘𝐺)𝐵) ⇒ ⊢ (𝜑 → 〈“𝑈𝑋𝑉”〉 ∈ (∟G‘𝐺)) | ||
Theorem | ragperp 26982 | Deduce that two lines are perpendicular from a right angle statement. One direction of theorem 8.13 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 20-Oct-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) & ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) & ⊢ (𝜑 → 𝑈 ∈ 𝐴) & ⊢ (𝜑 → 𝑉 ∈ 𝐵) & ⊢ (𝜑 → 𝑈 ≠ 𝑋) & ⊢ (𝜑 → 𝑉 ≠ 𝑋) & ⊢ (𝜑 → 〈“𝑈𝑋𝑉”〉 ∈ (∟G‘𝐺)) ⇒ ⊢ (𝜑 → 𝐴(⟂G‘𝐺)𝐵) | ||
Theorem | footexALT 26983* | Alternative version of footex 26986 which minimization requires a notably long time. (Contributed by Thierry Arnoux, 19-Oct-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴) | ||
Theorem | footexlem1 26984 | Lemma for footex 26986. (Contributed by Thierry Arnoux, 19-Oct-2019.) (Revised by Thierry Arnoux, 1-Jul-2023.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 = (𝐸𝐿𝐹)) & ⊢ (𝜑 → 𝐸 ≠ 𝐹) & ⊢ (𝜑 → 𝐸 ∈ (𝐹𝐼𝑌)) & ⊢ (𝜑 → (𝐸 − 𝑌) = (𝐸 − 𝐶)) & ⊢ (𝜑 → 𝐶 = (((pInvG‘𝐺)‘𝑅)‘𝑌)) & ⊢ (𝜑 → 𝑌 ∈ (𝐸𝐼𝑍)) & ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌 − 𝑅)) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ (𝑅𝐼𝑄)) & ⊢ (𝜑 → (𝑌 − 𝑄) = (𝑌 − 𝐸)) & ⊢ (𝜑 → 𝑌 ∈ ((((pInvG‘𝐺)‘𝑍)‘𝑄)𝐼𝐷)) & ⊢ (𝜑 → (𝑌 − 𝐷) = (𝑌 − 𝐶)) & ⊢ (𝜑 → 𝐷 = (((pInvG‘𝐺)‘𝑋)‘𝐶)) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐴) | ||
Theorem | footexlem2 26985 | Lemma for footex 26986. (Contributed by Thierry Arnoux, 19-Oct-2019.) (Revised by Thierry Arnoux, 1-Jul-2023.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 = (𝐸𝐿𝐹)) & ⊢ (𝜑 → 𝐸 ≠ 𝐹) & ⊢ (𝜑 → 𝐸 ∈ (𝐹𝐼𝑌)) & ⊢ (𝜑 → (𝐸 − 𝑌) = (𝐸 − 𝐶)) & ⊢ (𝜑 → 𝐶 = (((pInvG‘𝐺)‘𝑅)‘𝑌)) & ⊢ (𝜑 → 𝑌 ∈ (𝐸𝐼𝑍)) & ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌 − 𝑅)) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ (𝑅𝐼𝑄)) & ⊢ (𝜑 → (𝑌 − 𝑄) = (𝑌 − 𝐸)) & ⊢ (𝜑 → 𝑌 ∈ ((((pInvG‘𝐺)‘𝑍)‘𝑄)𝐼𝐷)) & ⊢ (𝜑 → (𝑌 − 𝐷) = (𝑌 − 𝐶)) & ⊢ (𝜑 → 𝐷 = (((pInvG‘𝐺)‘𝑋)‘𝐶)) ⇒ ⊢ (𝜑 → (𝐶𝐿𝑋)(⟂G‘𝐺)𝐴) | ||
Theorem | footex 26986* | From a point 𝐶 outside of a line 𝐴, there exists a point 𝑥 on 𝐴 such that (𝐶𝐿𝑥) is perpendicular to 𝐴. This point is unique, see foot 26987. (Contributed by Thierry Arnoux, 19-Oct-2019.) (Revised by Thierry Arnoux, 1-Jul-2023.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴) | ||
Theorem | foot 26987* | From a point 𝐶 outside of a line 𝐴, there exists a unique point 𝑥 on 𝐴 such that (𝐶𝐿𝑥) is perpendicular to 𝐴. That point is called the foot from 𝐶 on 𝐴. Theorem 8.18 of [Schwabhauser] p. 60. (Contributed by Thierry Arnoux, 19-Oct-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴) | ||
Theorem | footne 26988 | Uniqueness of the foot point. (Contributed by Thierry Arnoux, 28-Feb-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → (𝑋𝐿𝑌)(⟂G‘𝐺)𝐴) ⇒ ⊢ (𝜑 → ¬ 𝑌 ∈ 𝐴) | ||
Theorem | footeq 26989 | Uniqueness of the foot point. (Contributed by Thierry Arnoux, 1-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → (𝑋𝐿𝑍)(⟂G‘𝐺)𝐴) & ⊢ (𝜑 → (𝑌𝐿𝑍)(⟂G‘𝐺)𝐴) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
Theorem | hlperpnel 26990 | A point on a half-line which is perpendicular to a line cannot be on that line. (Contributed by Thierry Arnoux, 1-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝑈 ∈ 𝐴) & ⊢ (𝜑 → 𝑉 ∈ 𝑃) & ⊢ (𝜑 → 𝑊 ∈ 𝑃) & ⊢ (𝜑 → 𝐴(⟂G‘𝐺)(𝑈𝐿𝑉)) & ⊢ (𝜑 → 𝑉(𝐾‘𝑈)𝑊) ⇒ ⊢ (𝜑 → ¬ 𝑊 ∈ 𝐴) | ||
Theorem | perprag 26991 | Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 10-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐿𝐵)) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐶𝐿𝐷)) ⇒ ⊢ (𝜑 → 〈“𝐴𝐶𝐷”〉 ∈ (∟G‘𝐺)) | ||
Theorem | perpdragALT 26992 | Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 12-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐶)) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) | ||
Theorem | perpdrag 26993 | Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 12-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐶)) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) | ||
Theorem | colperp 26994 | Deduce a perpendicularity from perpendicularity and colinearity. (Contributed by Thierry Arnoux, 8-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)𝐷) & ⊢ (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) ⇒ ⊢ (𝜑 → (𝐴𝐿𝐶)(⟂G‘𝐺)𝐷) | ||
Theorem | colperpexlem1 26995 | Lemma for colperp 26994. First part of lemma 8.20 of [Schwabhauser] p. 62. (Contributed by Thierry Arnoux, 27-Oct-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ 𝑁 = (𝑆‘𝐵) & ⊢ 𝐾 = (𝑆‘𝑄) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → (𝐾‘(𝑀‘𝐶)) = (𝑁‘𝐶)) ⇒ ⊢ (𝜑 → 〈“𝐵𝐴𝑄”〉 ∈ (∟G‘𝐺)) | ||
Theorem | colperpexlem2 26996 | Lemma for colperpex 26998. Second part of lemma 8.20 of [Schwabhauser] p. 62. (Contributed by Thierry Arnoux, 10-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ 𝑁 = (𝑆‘𝐵) & ⊢ 𝐾 = (𝑆‘𝑄) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → (𝐾‘(𝑀‘𝐶)) = (𝑁‘𝐶)) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝑄) | ||
Theorem | colperpexlem3 26997* | Lemma for colperpex 26998. Case 1 of theorem 8.21 of [Schwabhauser] p. 63. (Contributed by Thierry Arnoux, 20-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴𝐿𝐵)) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ 𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡 ∈ 𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) | ||
Theorem | colperpex 26998* | In dimension 2 and above, on a line (𝐴𝐿𝐵) there is always a perpendicular 𝑃 from 𝐴 on a given plane (here given by 𝐶, in case 𝐶 does not lie on the line). Theorem 8.21 of [Schwabhauser] p. 63. (Contributed by Thierry Arnoux, 20-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ 𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡 ∈ 𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) | ||
Theorem | mideulem2 26999 | Lemma for opphllem 27000, which is itself used for mideu 27003. (Contributed by Thierry Arnoux, 19-Feb-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝑂 ∈ 𝑃) & ⊢ (𝜑 → 𝑇 ∈ 𝑃) & ⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵)) & ⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂)) & ⊢ (𝜑 → 𝑇 ∈ (𝐴𝐿𝐵)) & ⊢ (𝜑 → 𝑇 ∈ (𝑄𝐼𝑂)) & ⊢ (𝜑 → 𝑅 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ (𝐵𝐼𝑄)) & ⊢ (𝜑 → (𝐴 − 𝑂) = (𝐵 − 𝑅)) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ (𝑇𝐼𝐵)) & ⊢ (𝜑 → 𝑋 ∈ (𝑅𝐼𝑂)) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑍)) & ⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝑅)) & ⊢ (𝜑 → 𝑀 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 = ((𝑆‘𝑀)‘𝑍)) ⇒ ⊢ (𝜑 → 𝐵 = 𝑀) | ||
Theorem | opphllem 27000* | Lemma 8.24 of [Schwabhauser] p. 66. This is used later for mideulem 27001 and later for opphl 27019. (Contributed by Thierry Arnoux, 21-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝑂 ∈ 𝑃) & ⊢ (𝜑 → 𝑇 ∈ 𝑃) & ⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵)) & ⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂)) & ⊢ (𝜑 → 𝑇 ∈ (𝐴𝐿𝐵)) & ⊢ (𝜑 → 𝑇 ∈ (𝑄𝐼𝑂)) & ⊢ (𝜑 → 𝑅 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ (𝐵𝐼𝑄)) & ⊢ (𝜑 → (𝐴 − 𝑂) = (𝐵 − 𝑅)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝑂 = ((𝑆‘𝑥)‘𝑅))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |