| Metamath
Proof Explorer Theorem List (p. 270 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | rlimcnp2 26901* | Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| ⊢ (𝜑 → 𝐴 ⊆ (0[,)+∞)) & ⊢ (𝜑 → 0 ∈ 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑆 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (𝑦 ∈ 𝐵 ↔ (1 / 𝑦) ∈ 𝐴)) & ⊢ (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅) & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t 𝐴) ⇒ ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0))) | ||
| Theorem | rlimcnp3 26902* | Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝑆 ∈ ℂ) & ⊢ (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅) & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t (0[,)+∞)) ⇒ ⊢ (𝜑 → ((𝑦 ∈ ℝ+ ↦ 𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0))) | ||
| Theorem | xrlimcnp 26903* | Relate a limit of a real-valued sequence at infinity to the continuity of the corresponding extended real function at +∞. Since any ⇝𝑟 limit can be written in the form on the left side of the implication, this shows that real limits are a special case of topological continuity at a point. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| ⊢ (𝜑 → 𝐴 = (𝐵 ∪ {+∞})) & ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ ℂ) & ⊢ (𝑥 = +∞ → 𝑅 = 𝐶) & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = ((ordTop‘ ≤ ) ↾t 𝐴) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝑅) ⇝𝑟 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞))) | ||
| Theorem | efrlim 26904* | The limit of the sequence (1 + 𝐴 / 𝑘)↑𝑘 is the exponential function. This is often taken as an alternate definition of the exponential function (see also dfef2 26906). (Contributed by Mario Carneiro, 1-Mar-2015.) Avoid ax-mulf 11083. (Revised by GG, 19-Apr-2025.) |
| ⊢ 𝑆 = (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ⇒ ⊢ (𝐴 ∈ ℂ → (𝑘 ∈ ℝ+ ↦ ((1 + (𝐴 / 𝑘))↑𝑐𝑘)) ⇝𝑟 (exp‘𝐴)) | ||
| Theorem | efrlimOLD 26905* | Obsolete version of efrlim 26904 as of 19-Apr-2025. (Contributed by Mario Carneiro, 1-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑆 = (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ⇒ ⊢ (𝐴 ∈ ℂ → (𝑘 ∈ ℝ+ ↦ ((1 + (𝐴 / 𝑘))↑𝑐𝑘)) ⇝𝑟 (exp‘𝐴)) | ||
| Theorem | dfef2 26906* | The limit of the sequence (1 + 𝐴 / 𝑘)↑𝑘 as 𝑘 goes to +∞ is (exp‘𝐴). This is another common definition of e. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = ((1 + (𝐴 / 𝑘))↑𝑘)) ⇒ ⊢ (𝜑 → 𝐹 ⇝ (exp‘𝐴)) | ||
| Theorem | cxplim 26907* | A power to a negative exponent goes to zero as the base becomes large. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Mario Carneiro, 18-May-2016.) |
| ⊢ (𝐴 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ (1 / (𝑛↑𝑐𝐴))) ⇝𝑟 0) | ||
| Theorem | sqrtlim 26908 | The inverse square root function converges to zero. (Contributed by Mario Carneiro, 18-May-2016.) |
| ⊢ (𝑛 ∈ ℝ+ ↦ (1 / (√‘𝑛))) ⇝𝑟 0 | ||
| Theorem | rlimcxp 26909* | Any power to a positive exponent of a converging sequence also converges. (Contributed by Mario Carneiro, 18-Sep-2014.) |
| ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 0) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)) ⇝𝑟 0) | ||
| Theorem | o1cxp 26910* | An eventually bounded function taken to a nonnegative power is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 0 ≤ (ℜ‘𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)) ∈ 𝑂(1)) | ||
| Theorem | cxp2limlem 26911* | A linear factor grows slower than any exponential with base greater than 1. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝑛 ∈ ℝ+ ↦ (𝑛 / (𝐴↑𝑐𝑛))) ⇝𝑟 0) | ||
| Theorem | cxp2lim 26912* | Any power grows slower than any exponential with base greater than 1. (Contributed by Mario Carneiro, 18-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛↑𝑐𝐴) / (𝐵↑𝑐𝑛))) ⇝𝑟 0) | ||
| Theorem | cxploglim 26913* | The logarithm grows slower than any positive power. (Contributed by Mario Carneiro, 18-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛↑𝑐𝐴))) ⇝𝑟 0) | ||
| Theorem | cxploglim2 26914* | Every power of the logarithm grows slower than any positive power. (Contributed by Mario Carneiro, 20-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝑛 ∈ ℝ+ ↦ (((log‘𝑛)↑𝑐𝐴) / (𝑛↑𝑐𝐵))) ⇝𝑟 0) | ||
| Theorem | divsqrtsumlem 26915* | Lemma for divsqrsum 26917 and divsqrtsum2 26918. (Contributed by Mario Carneiro, 18-May-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) ⇒ ⊢ (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹 ⇝𝑟 𝐿 ∧ 𝐴 ∈ ℝ+) → (abs‘((𝐹‘𝐴) − 𝐿)) ≤ (1 / (√‘𝐴)))) | ||
| Theorem | divsqrsumf 26916* | The function 𝐹 used in divsqrsum 26917 is a real function. (Contributed by Mario Carneiro, 12-May-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) ⇒ ⊢ 𝐹:ℝ+⟶ℝ | ||
| Theorem | divsqrsum 26917* | The sum Σ𝑛 ≤ 𝑥(1 / √𝑛) is asymptotic to 2√𝑥 + 𝐿 with a finite limit 𝐿. (In fact, this limit is ζ(1 / 2) ≈ -1.46....) (Contributed by Mario Carneiro, 9-May-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) ⇒ ⊢ 𝐹 ∈ dom ⇝𝑟 | ||
| Theorem | divsqrtsum2 26918* | A bound on the distance of the sum Σ𝑛 ≤ 𝑥(1 / √𝑛) from its asymptotic value 2√𝑥 + 𝐿. (Contributed by Mario Carneiro, 18-May-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) & ⊢ (𝜑 → 𝐹 ⇝𝑟 𝐿) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ+) → (abs‘((𝐹‘𝐴) − 𝐿)) ≤ (1 / (√‘𝐴))) | ||
| Theorem | divsqrtsumo1 26919* | The sum Σ𝑛 ≤ 𝑥(1 / √𝑛) has the asymptotic expansion 2√𝑥 + 𝐿 + 𝑂(1 / √𝑥), for some 𝐿. (Contributed by Mario Carneiro, 10-May-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) & ⊢ (𝜑 → 𝐹 ⇝𝑟 𝐿) ⇒ ⊢ (𝜑 → (𝑦 ∈ ℝ+ ↦ (((𝐹‘𝑦) − 𝐿) · (√‘𝑦))) ∈ 𝑂(1)) | ||
| Theorem | cvxcl 26920* | Closure of a 0-1 linear combination in a convex set. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥[,]𝑦) ⊆ 𝐷) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷) | ||
| Theorem | scvxcvx 26921* | A strictly convex function is convex. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) ≤ ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌)))) | ||
| Theorem | jensenlem1 26922* | Lemma for jensen 26924. (Contributed by Mario Carneiro, 4-Jun-2016.) |
| ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑇:𝐴⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑋:𝐴⟶𝐷) & ⊢ (𝜑 → 0 < (ℂfld Σg 𝑇)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) & ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐵) & ⊢ (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴) & ⊢ 𝑆 = (ℂfld Σg (𝑇 ↾ 𝐵)) & ⊢ 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) ⇒ ⊢ (𝜑 → 𝐿 = (𝑆 + (𝑇‘𝑧))) | ||
| Theorem | jensenlem2 26923* | Lemma for jensen 26924. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑇:𝐴⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑋:𝐴⟶𝐷) & ⊢ (𝜑 → 0 < (ℂfld Σg 𝑇)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) & ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐵) & ⊢ (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴) & ⊢ 𝑆 = (ℂfld Σg (𝑇 ↾ 𝐵)) & ⊢ 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) & ⊢ (𝜑 → 𝑆 ∈ ℝ+) & ⊢ (𝜑 → ((ℂfld Σg ((𝑇 ∘f · 𝑋) ↾ 𝐵)) / 𝑆) ∈ 𝐷) & ⊢ (𝜑 → (𝐹‘((ℂfld Σg ((𝑇 ∘f · 𝑋) ↾ 𝐵)) / 𝑆)) ≤ ((ℂfld Σg ((𝑇 ∘f · (𝐹 ∘ 𝑋)) ↾ 𝐵)) / 𝑆)) ⇒ ⊢ (𝜑 → (((ℂfld Σg ((𝑇 ∘f · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿) ∈ 𝐷 ∧ (𝐹‘((ℂfld Σg ((𝑇 ∘f · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿)) ≤ ((ℂfld Σg ((𝑇 ∘f · (𝐹 ∘ 𝑋)) ↾ (𝐵 ∪ {𝑧}))) / 𝐿))) | ||
| Theorem | jensen 26924* | Jensen's inequality, a finite extension of the definition of convexity (the last hypothesis). (Contributed by Mario Carneiro, 21-Jun-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑇:𝐴⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑋:𝐴⟶𝐷) & ⊢ (𝜑 → 0 < (ℂfld Σg 𝑇)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) ⇒ ⊢ (𝜑 → (((ℂfld Σg (𝑇 ∘f · 𝑋)) / (ℂfld Σg 𝑇)) ∈ 𝐷 ∧ (𝐹‘((ℂfld Σg (𝑇 ∘f · 𝑋)) / (ℂfld Σg 𝑇))) ≤ ((ℂfld Σg (𝑇 ∘f · (𝐹 ∘ 𝑋))) / (ℂfld Σg 𝑇)))) | ||
| Theorem | amgmlem 26925 | Lemma for amgm 26926. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ 𝑀 = (mulGrp‘ℂfld) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ+) ⇒ ⊢ (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴))) | ||
| Theorem | amgm 26926 | Inequality of arithmetic and geometric means. Here (𝑀 Σg 𝐹) calculates the group sum within the multiplicative monoid of the complex numbers (or in other words, it multiplies the elements 𝐹(𝑥), 𝑥 ∈ 𝐴 together), and (ℂfld Σg 𝐹) calculates the group sum in the additive group (i.e. the sum of the elements). This is Metamath 100 proof #38. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑀 = (mulGrp‘ℂfld) ⇒ ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴))) | ||
| Syntax | cem 26927 | The Euler-Mascheroni constant. (The label abbreviates Euler-Mascheroni.) |
| class γ | ||
| Definition | df-em 26928 | Define the Euler-Mascheroni constant, γ = 0.57721.... This is the limit of the series Σ𝑘 ∈ (1...𝑚)(1 / 𝑘) − (log‘𝑚), with a proof that the limit exists in emcl 26938. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ γ = Σ𝑘 ∈ ℕ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) | ||
| Theorem | logdifbnd 26929 | Bound on the difference of logs. (Contributed by Mario Carneiro, 23-May-2016.) |
| ⊢ (𝐴 ∈ ℝ+ → ((log‘(𝐴 + 1)) − (log‘𝐴)) ≤ (1 / 𝐴)) | ||
| Theorem | logdiflbnd 26930 | Lower bound on the difference of logs. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝐴 ∈ ℝ+ → (1 / (𝐴 + 1)) ≤ ((log‘(𝐴 + 1)) − (log‘𝐴))) | ||
| Theorem | emcllem1 26931* | Lemma for emcl 26938. The series 𝐹 and 𝐺 are sequences of real numbers that approach γ from above and below, respectively. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) ⇒ ⊢ (𝐹:ℕ⟶ℝ ∧ 𝐺:ℕ⟶ℝ) | ||
| Theorem | emcllem2 26932* | Lemma for emcl 26938. 𝐹 is increasing, and 𝐺 is decreasing. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) ⇒ ⊢ (𝑁 ∈ ℕ → ((𝐹‘(𝑁 + 1)) ≤ (𝐹‘𝑁) ∧ (𝐺‘𝑁) ≤ (𝐺‘(𝑁 + 1)))) | ||
| Theorem | emcllem3 26933* | Lemma for emcl 26938. The function 𝐻 is the difference between 𝐹 and 𝐺. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝐻‘𝑁) = ((𝐹‘𝑁) − (𝐺‘𝑁))) | ||
| Theorem | emcllem4 26934* | Lemma for emcl 26938. The difference between series 𝐹 and 𝐺 tends to zero. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) ⇒ ⊢ 𝐻 ⇝ 0 | ||
| Theorem | emcllem5 26935* | Lemma for emcl 26938. The partial sums of the series 𝑇, which is used in Definition df-em 26928, is in fact the same as 𝐺. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛))))) ⇒ ⊢ 𝐺 = seq1( + , 𝑇) | ||
| Theorem | emcllem6 26936* | Lemma for emcl 26938. By the previous lemmas, 𝐹 and 𝐺 must approach a common limit, which is γ by definition. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛))))) ⇒ ⊢ (𝐹 ⇝ γ ∧ 𝐺 ⇝ γ) | ||
| Theorem | emcllem7 26937* | Lemma for emcl 26938 and harmonicbnd 26939. Derive bounds on γ as 𝐹(1) and 𝐺(1). (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 9-Apr-2016.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛))))) ⇒ ⊢ (γ ∈ ((1 − (log‘2))[,]1) ∧ 𝐹:ℕ⟶(γ[,]1) ∧ 𝐺:ℕ⟶((1 − (log‘2))[,]γ)) | ||
| Theorem | emcl 26938 | Closure and bounds for the Euler-Mascheroni constant. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ γ ∈ ((1 − (log‘2))[,]1) | ||
| Theorem | harmonicbnd 26939* | A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 9-Apr-2016.) |
| ⊢ (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ∈ (γ[,]1)) | ||
| Theorem | harmonicbnd2 26940* | A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ ((1 − (log‘2))[,]γ)) | ||
| Theorem | emre 26941 | The Euler-Mascheroni constant is a real number. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ γ ∈ ℝ | ||
| Theorem | emgt0 26942 | The Euler-Mascheroni constant is positive. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ 0 < γ | ||
| Theorem | harmonicbnd3 26943* | A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ (𝑁 ∈ ℕ0 → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ (0[,]γ)) | ||
| Theorem | harmoniclbnd 26944* | A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ≤ Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚)) | ||
| Theorem | harmonicubnd 26945* | A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ≤ ((log‘𝐴) + 1)) | ||
| Theorem | harmonicbnd4 26946* | The asymptotic behavior of Σ𝑚 ≤ 𝐴, 1 / 𝑚 = log𝐴 + γ + 𝑂(1 / 𝐴). (Contributed by Mario Carneiro, 14-May-2016.) |
| ⊢ (𝐴 ∈ ℝ+ → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴)) | ||
| Theorem | fsumharmonic 26947* | Bound a finite sum based on the harmonic series, where the "strong" bound 𝐶 only applies asymptotically, and there is a "weak" bound 𝑅 for the remaining values. (Contributed by Mario Carneiro, 18-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → (𝑇 ∈ ℝ ∧ 1 ≤ 𝑇)) & ⊢ (𝜑 → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 0 ≤ 𝐶) & ⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑇 ≤ (𝐴 / 𝑛)) → (abs‘𝐵) ≤ (𝐶 · 𝑛)) & ⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝐴 / 𝑛) < 𝑇) → (abs‘𝐵) ≤ 𝑅) ⇒ ⊢ (𝜑 → (abs‘Σ𝑛 ∈ (1...(⌊‘𝐴))(𝐵 / 𝑛)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶 + (𝑅 · ((log‘𝑇) + 1)))) | ||
| Syntax | czeta 26948 | The Riemann zeta function. |
| class ζ | ||
| Definition | df-zeta 26949* | Define the Riemann zeta function. This definition uses a series expansion of the alternating zeta function ~? zetaalt that is convergent everywhere except 1, but going from the alternating zeta function to the regular zeta function requires dividing by 1 − 2↑(1 − 𝑠), which has zeroes other than 1. To extract the correct value of the zeta function at these points, we extend the divided alternating zeta function by continuity. (Contributed by Mario Carneiro, 18-Jul-2014.) |
| ⊢ ζ = (℩𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓‘𝑠)) = Σ𝑛 ∈ ℕ0 (Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))) | ||
| Theorem | zetacvg 26950* | The zeta series is convergent. (Contributed by Mario Carneiro, 18-Jul-2014.) |
| ⊢ (𝜑 → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 1 < (ℜ‘𝑆)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (𝑘↑𝑐-𝑆)) ⇒ ⊢ (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ ) | ||
| Syntax | clgam 26951 | Logarithm of the Gamma function. |
| class log Γ | ||
| Syntax | cgam 26952 | The Gamma function. |
| class Γ | ||
| Syntax | cigam 26953 | The inverse Gamma function. |
| class 1/Γ | ||
| Definition | df-lgam 26954* | Define the log-Gamma function. We can work with this form of the gamma function a bit easier than the equivalent expression for the gamma function itself, and moreover this function is not actually equal to log(Γ(𝑥)) because the branch cuts are placed differently (we do have exp(log Γ(𝑥)) = Γ(𝑥), though). This definition is attributed to Euler, and unlike the usual integral definition is defined on the entire complex plane except the nonpositive integers ℤ ∖ ℕ, where the function has simple poles. (Contributed by Mario Carneiro, 12-Jul-2014.) |
| ⊢ log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧))) | ||
| Definition | df-gam 26955 | Define the Gamma function. See df-lgam 26954 for more information about the reason for this definition in terms of the log-gamma function. (Contributed by Mario Carneiro, 12-Jul-2014.) |
| ⊢ Γ = (exp ∘ log Γ) | ||
| Definition | df-igam 26956 | Define the inverse Gamma function, which is defined everywhere, unlike the Gamma function itself. (Contributed by Mario Carneiro, 16-Jul-2017.) |
| ⊢ 1/Γ = (𝑥 ∈ ℂ ↦ if(𝑥 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝑥)))) | ||
| Theorem | eldmgm 26957 | Elementhood in the set of non-nonpositive integers. (Contributed by Mario Carneiro, 12-Jul-2014.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) | ||
| Theorem | dmgmaddn0 26958 | If 𝐴 is not a nonpositive integer, then 𝐴 + 𝑁 is nonzero for any nonnegative integer 𝑁. (Contributed by Mario Carneiro, 12-Jul-2014.) |
| ⊢ ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → (𝐴 + 𝑁) ≠ 0) | ||
| Theorem | dmlogdmgm 26959 | If 𝐴 is in the continuous domain of the logarithm, then it is in the domain of the Gamma function. (Contributed by Mario Carneiro, 8-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) | ||
| Theorem | rpdmgm 26960 | A positive real number is in the domain of the Gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) | ||
| Theorem | dmgmn0 26961 | If 𝐴 is not a nonpositive integer, then 𝐴 is nonzero. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → 𝐴 ≠ 0) | ||
| Theorem | dmgmaddnn0 26962 | If 𝐴 is not a nonpositive integer and 𝑁 is a nonnegative integer, then 𝐴 + 𝑁 is also not a nonpositive integer. (Contributed by Mario Carneiro, 6-Jul-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 + 𝑁) ∈ (ℂ ∖ (ℤ ∖ ℕ))) | ||
| Theorem | dmgmdivn0 26963 | Lemma for lgamf 26977. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝐴 / 𝑀) + 1) ≠ 0) | ||
| Theorem | lgamgulmlem1 26964* | Lemma for lgamgulm 26970. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} ⇒ ⊢ (𝜑 → 𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ))) | ||
| Theorem | lgamgulmlem2 26965* | Lemma for lgamgulm 26970. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → (2 · 𝑅) ≤ 𝑁) ⇒ ⊢ (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((1 / (𝑁 − 𝑅)) − (1 / 𝑁)))) | ||
| Theorem | lgamgulmlem3 26966* | Lemma for lgamgulm 26970. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → (2 · 𝑅) ≤ 𝑁) ⇒ ⊢ (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2)))) | ||
| Theorem | lgamgulmlem4 26967* | Lemma for lgamgulm 26970. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) & ⊢ 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) ⇒ ⊢ (𝜑 → seq1( + , 𝑇) ∈ dom ⇝ ) | ||
| Theorem | lgamgulmlem5 26968* | Lemma for lgamgulm 26970. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) & ⊢ 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) ⇒ ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈)) → (abs‘((𝐺‘𝑛)‘𝑦)) ≤ (𝑇‘𝑛)) | ||
| Theorem | lgamgulmlem6 26969* | The series 𝐺 is uniformly convergent on the compact region 𝑈, which describes a circle of radius 𝑅 with holes of size 1 / 𝑅 around the poles of the gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) & ⊢ 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) ⇒ ⊢ (𝜑 → (seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢‘𝑈) ∧ (seq1( ∘f + , 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ 𝑂) → ∃𝑟 ∈ ℝ ∀𝑧 ∈ 𝑈 (abs‘𝑂) ≤ 𝑟))) | ||
| Theorem | lgamgulm 26970* | The series 𝐺 is uniformly convergent on the compact region 𝑈, which describes a circle of radius 𝑅 with holes of size 1 / 𝑅 around the poles of the gamma function. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ⇒ ⊢ (𝜑 → seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢‘𝑈)) | ||
| Theorem | lgamgulm2 26971* | Rewrite the limit of the sequence 𝐺 in terms of the log-Gamma function. (Contributed by Mario Carneiro, 6-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ⇒ ⊢ (𝜑 → (∀𝑧 ∈ 𝑈 (log Γ‘𝑧) ∈ ℂ ∧ seq1( ∘f + , 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))) | ||
| Theorem | lgambdd 26972* | The log-Gamma function is bounded on the region 𝑈. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℝ ∀𝑧 ∈ 𝑈 (abs‘(log Γ‘𝑧)) ≤ 𝑟) | ||
| Theorem | lgamucov 26973* | The 𝑈 regions used in the proof of lgamgulm 26970 have interiors which cover the entire domain of the Gamma function. (Contributed by Mario Carneiro, 6-Jul-2017.) |
| ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) & ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℕ 𝐴 ∈ ((int‘𝐽)‘𝑈)) | ||
| Theorem | lgamucov2 26974* | The 𝑈 regions used in the proof of lgamgulm 26970 have interiors which cover the entire domain of the Gamma function. (Contributed by Mario Carneiro, 8-Jul-2017.) |
| ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℕ 𝐴 ∈ 𝑈) | ||
| Theorem | lgamcvglem 26975* | Lemma for lgamf 26977 and lgamcvg 26989. (Contributed by Mario Carneiro, 8-Jul-2017.) |
| ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) ⇒ ⊢ (𝜑 → ((log Γ‘𝐴) ∈ ℂ ∧ seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴)))) | ||
| Theorem | lgamcl 26976 | The log-Gamma function is a complex function defined on the whole complex plane except for the negative integers. (Contributed by Mario Carneiro, 8-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘𝐴) ∈ ℂ) | ||
| Theorem | lgamf 26977 | The log-Gamma function is a complex function defined on the whole complex plane except for the negative integers. (Contributed by Mario Carneiro, 6-Jul-2017.) |
| ⊢ log Γ:(ℂ ∖ (ℤ ∖ ℕ))⟶ℂ | ||
| Theorem | gamf 26978 | The Gamma function is a complex function defined on the whole complex plane except for the negative integers. (Contributed by Mario Carneiro, 6-Jul-2017.) |
| ⊢ Γ:(ℂ ∖ (ℤ ∖ ℕ))⟶ℂ | ||
| Theorem | gamcl 26979 | The exponential of the log-Gamma function is the Gamma function (by definition). (Contributed by Mario Carneiro, 8-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (Γ‘𝐴) ∈ ℂ) | ||
| Theorem | eflgam 26980 | The exponential of the log-Gamma function is the Gamma function (by definition). (Contributed by Mario Carneiro, 8-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴)) | ||
| Theorem | gamne0 26981 | The Gamma function is never zero. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (Γ‘𝐴) ≠ 0) | ||
| Theorem | igamval 26982 | Value of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.) |
| ⊢ (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴)))) | ||
| Theorem | igamz 26983 | Value of the inverse Gamma function on nonpositive integers. (Contributed by Mario Carneiro, 16-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = 0) | ||
| Theorem | igamgam 26984 | Value of the inverse Gamma function in terms of the Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (1/Γ‘𝐴) = (1 / (Γ‘𝐴))) | ||
| Theorem | igamlgam 26985 | Value of the inverse Gamma function in terms of the log-Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (1/Γ‘𝐴) = (exp‘-(log Γ‘𝐴))) | ||
| Theorem | igamf 26986 | Closure of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.) |
| ⊢ 1/Γ:ℂ⟶ℂ | ||
| Theorem | igamcl 26987 | Closure of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.) |
| ⊢ (𝐴 ∈ ℂ → (1/Γ‘𝐴) ∈ ℂ) | ||
| Theorem | gamigam 26988 | The Gamma function is the inverse of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (Γ‘𝐴) = (1 / (1/Γ‘𝐴))) | ||
| Theorem | lgamcvg 26989* | The series 𝐺 converges to log Γ(𝐴) + log(𝐴). (Contributed by Mario Carneiro, 6-Jul-2017.) |
| ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴))) | ||
| Theorem | lgamcvg2 26990* | The series 𝐺 converges to log Γ(𝐴 + 1). (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → seq1( + , 𝐺) ⇝ (log Γ‘(𝐴 + 1))) | ||
| Theorem | gamcvg 26991* | The pointwise exponential of the series 𝐺 converges to Γ(𝐴) · 𝐴. (Contributed by Mario Carneiro, 6-Jul-2017.) |
| ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ ((Γ‘𝐴) · 𝐴)) | ||
| Theorem | lgamp1 26992 | The functional equation of the (log) Gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘(𝐴 + 1)) = ((log Γ‘𝐴) + (log‘𝐴))) | ||
| Theorem | gamp1 26993 | The functional equation of the Gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (Γ‘(𝐴 + 1)) = ((Γ‘𝐴) · 𝐴)) | ||
| Theorem | gamcvg2lem 26994* | Lemma for gamcvg2 26995. (Contributed by Mario Carneiro, 10-Jul-2017.) |
| ⊢ 𝐹 = (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1))) & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) ⇒ ⊢ (𝜑 → (exp ∘ seq1( + , 𝐺)) = seq1( · , 𝐹)) | ||
| Theorem | gamcvg2 26995* | An infinite product expression for the gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ 𝐹 = (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1))) & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → seq1( · , 𝐹) ⇝ ((Γ‘𝐴) · 𝐴)) | ||
| Theorem | regamcl 26996 | The Gamma function is real for real input. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) → (Γ‘𝐴) ∈ ℝ) | ||
| Theorem | relgamcl 26997 | The log-Gamma function is real for positive real input. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (𝐴 ∈ ℝ+ → (log Γ‘𝐴) ∈ ℝ) | ||
| Theorem | rpgamcl 26998 | The log-Gamma function is positive real for positive real input. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (𝐴 ∈ ℝ+ → (Γ‘𝐴) ∈ ℝ+) | ||
| Theorem | lgam1 26999 | The log-Gamma function at one. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (log Γ‘1) = 0 | ||
| Theorem | gam1 27000 | The log-Gamma function at one. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (Γ‘1) = 1 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |