| Metamath
Proof Explorer Theorem List (p. 270 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | o1cxp 26901* | An eventually bounded function taken to a nonnegative power is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 0 ≤ (ℜ‘𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)) ∈ 𝑂(1)) | ||
| Theorem | cxp2limlem 26902* | A linear factor grows slower than any exponential with base greater than 1. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝑛 ∈ ℝ+ ↦ (𝑛 / (𝐴↑𝑐𝑛))) ⇝𝑟 0) | ||
| Theorem | cxp2lim 26903* | Any power grows slower than any exponential with base greater than 1. (Contributed by Mario Carneiro, 18-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛↑𝑐𝐴) / (𝐵↑𝑐𝑛))) ⇝𝑟 0) | ||
| Theorem | cxploglim 26904* | The logarithm grows slower than any positive power. (Contributed by Mario Carneiro, 18-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛↑𝑐𝐴))) ⇝𝑟 0) | ||
| Theorem | cxploglim2 26905* | Every power of the logarithm grows slower than any positive power. (Contributed by Mario Carneiro, 20-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝑛 ∈ ℝ+ ↦ (((log‘𝑛)↑𝑐𝐴) / (𝑛↑𝑐𝐵))) ⇝𝑟 0) | ||
| Theorem | divsqrtsumlem 26906* | Lemma for divsqrsum 26908 and divsqrtsum2 26909. (Contributed by Mario Carneiro, 18-May-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) ⇒ ⊢ (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹 ⇝𝑟 𝐿 ∧ 𝐴 ∈ ℝ+) → (abs‘((𝐹‘𝐴) − 𝐿)) ≤ (1 / (√‘𝐴)))) | ||
| Theorem | divsqrsumf 26907* | The function 𝐹 used in divsqrsum 26908 is a real function. (Contributed by Mario Carneiro, 12-May-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) ⇒ ⊢ 𝐹:ℝ+⟶ℝ | ||
| Theorem | divsqrsum 26908* | The sum Σ𝑛 ≤ 𝑥(1 / √𝑛) is asymptotic to 2√𝑥 + 𝐿 with a finite limit 𝐿. (In fact, this limit is ζ(1 / 2) ≈ -1.46....) (Contributed by Mario Carneiro, 9-May-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) ⇒ ⊢ 𝐹 ∈ dom ⇝𝑟 | ||
| Theorem | divsqrtsum2 26909* | A bound on the distance of the sum Σ𝑛 ≤ 𝑥(1 / √𝑛) from its asymptotic value 2√𝑥 + 𝐿. (Contributed by Mario Carneiro, 18-May-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) & ⊢ (𝜑 → 𝐹 ⇝𝑟 𝐿) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ+) → (abs‘((𝐹‘𝐴) − 𝐿)) ≤ (1 / (√‘𝐴))) | ||
| Theorem | divsqrtsumo1 26910* | The sum Σ𝑛 ≤ 𝑥(1 / √𝑛) has the asymptotic expansion 2√𝑥 + 𝐿 + 𝑂(1 / √𝑥), for some 𝐿. (Contributed by Mario Carneiro, 10-May-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) & ⊢ (𝜑 → 𝐹 ⇝𝑟 𝐿) ⇒ ⊢ (𝜑 → (𝑦 ∈ ℝ+ ↦ (((𝐹‘𝑦) − 𝐿) · (√‘𝑦))) ∈ 𝑂(1)) | ||
| Theorem | cvxcl 26911* | Closure of a 0-1 linear combination in a convex set. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥[,]𝑦) ⊆ 𝐷) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷) | ||
| Theorem | scvxcvx 26912* | A strictly convex function is convex. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) ≤ ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌)))) | ||
| Theorem | jensenlem1 26913* | Lemma for jensen 26915. (Contributed by Mario Carneiro, 4-Jun-2016.) |
| ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑇:𝐴⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑋:𝐴⟶𝐷) & ⊢ (𝜑 → 0 < (ℂfld Σg 𝑇)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) & ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐵) & ⊢ (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴) & ⊢ 𝑆 = (ℂfld Σg (𝑇 ↾ 𝐵)) & ⊢ 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) ⇒ ⊢ (𝜑 → 𝐿 = (𝑆 + (𝑇‘𝑧))) | ||
| Theorem | jensenlem2 26914* | Lemma for jensen 26915. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑇:𝐴⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑋:𝐴⟶𝐷) & ⊢ (𝜑 → 0 < (ℂfld Σg 𝑇)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) & ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐵) & ⊢ (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴) & ⊢ 𝑆 = (ℂfld Σg (𝑇 ↾ 𝐵)) & ⊢ 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) & ⊢ (𝜑 → 𝑆 ∈ ℝ+) & ⊢ (𝜑 → ((ℂfld Σg ((𝑇 ∘f · 𝑋) ↾ 𝐵)) / 𝑆) ∈ 𝐷) & ⊢ (𝜑 → (𝐹‘((ℂfld Σg ((𝑇 ∘f · 𝑋) ↾ 𝐵)) / 𝑆)) ≤ ((ℂfld Σg ((𝑇 ∘f · (𝐹 ∘ 𝑋)) ↾ 𝐵)) / 𝑆)) ⇒ ⊢ (𝜑 → (((ℂfld Σg ((𝑇 ∘f · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿) ∈ 𝐷 ∧ (𝐹‘((ℂfld Σg ((𝑇 ∘f · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿)) ≤ ((ℂfld Σg ((𝑇 ∘f · (𝐹 ∘ 𝑋)) ↾ (𝐵 ∪ {𝑧}))) / 𝐿))) | ||
| Theorem | jensen 26915* | Jensen's inequality, a finite extension of the definition of convexity (the last hypothesis). (Contributed by Mario Carneiro, 21-Jun-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑇:𝐴⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑋:𝐴⟶𝐷) & ⊢ (𝜑 → 0 < (ℂfld Σg 𝑇)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) ⇒ ⊢ (𝜑 → (((ℂfld Σg (𝑇 ∘f · 𝑋)) / (ℂfld Σg 𝑇)) ∈ 𝐷 ∧ (𝐹‘((ℂfld Σg (𝑇 ∘f · 𝑋)) / (ℂfld Σg 𝑇))) ≤ ((ℂfld Σg (𝑇 ∘f · (𝐹 ∘ 𝑋))) / (ℂfld Σg 𝑇)))) | ||
| Theorem | amgmlem 26916 | Lemma for amgm 26917. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ 𝑀 = (mulGrp‘ℂfld) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ+) ⇒ ⊢ (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴))) | ||
| Theorem | amgm 26917 | Inequality of arithmetic and geometric means. Here (𝑀 Σg 𝐹) calculates the group sum within the multiplicative monoid of the complex numbers (or in other words, it multiplies the elements 𝐹(𝑥), 𝑥 ∈ 𝐴 together), and (ℂfld Σg 𝐹) calculates the group sum in the additive group (i.e. the sum of the elements). This is Metamath 100 proof #38. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑀 = (mulGrp‘ℂfld) ⇒ ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴))) | ||
| Syntax | cem 26918 | The Euler-Mascheroni constant. (The label abbreviates Euler-Mascheroni.) |
| class γ | ||
| Definition | df-em 26919 | Define the Euler-Mascheroni constant, γ = 0.57721.... This is the limit of the series Σ𝑘 ∈ (1...𝑚)(1 / 𝑘) − (log‘𝑚), with a proof that the limit exists in emcl 26929. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ γ = Σ𝑘 ∈ ℕ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) | ||
| Theorem | logdifbnd 26920 | Bound on the difference of logs. (Contributed by Mario Carneiro, 23-May-2016.) |
| ⊢ (𝐴 ∈ ℝ+ → ((log‘(𝐴 + 1)) − (log‘𝐴)) ≤ (1 / 𝐴)) | ||
| Theorem | logdiflbnd 26921 | Lower bound on the difference of logs. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝐴 ∈ ℝ+ → (1 / (𝐴 + 1)) ≤ ((log‘(𝐴 + 1)) − (log‘𝐴))) | ||
| Theorem | emcllem1 26922* | Lemma for emcl 26929. The series 𝐹 and 𝐺 are sequences of real numbers that approach γ from above and below, respectively. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) ⇒ ⊢ (𝐹:ℕ⟶ℝ ∧ 𝐺:ℕ⟶ℝ) | ||
| Theorem | emcllem2 26923* | Lemma for emcl 26929. 𝐹 is increasing, and 𝐺 is decreasing. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) ⇒ ⊢ (𝑁 ∈ ℕ → ((𝐹‘(𝑁 + 1)) ≤ (𝐹‘𝑁) ∧ (𝐺‘𝑁) ≤ (𝐺‘(𝑁 + 1)))) | ||
| Theorem | emcllem3 26924* | Lemma for emcl 26929. The function 𝐻 is the difference between 𝐹 and 𝐺. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝐻‘𝑁) = ((𝐹‘𝑁) − (𝐺‘𝑁))) | ||
| Theorem | emcllem4 26925* | Lemma for emcl 26929. The difference between series 𝐹 and 𝐺 tends to zero. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) ⇒ ⊢ 𝐻 ⇝ 0 | ||
| Theorem | emcllem5 26926* | Lemma for emcl 26929. The partial sums of the series 𝑇, which is used in Definition df-em 26919, is in fact the same as 𝐺. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛))))) ⇒ ⊢ 𝐺 = seq1( + , 𝑇) | ||
| Theorem | emcllem6 26927* | Lemma for emcl 26929. By the previous lemmas, 𝐹 and 𝐺 must approach a common limit, which is γ by definition. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛))))) ⇒ ⊢ (𝐹 ⇝ γ ∧ 𝐺 ⇝ γ) | ||
| Theorem | emcllem7 26928* | Lemma for emcl 26929 and harmonicbnd 26930. Derive bounds on γ as 𝐹(1) and 𝐺(1). (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 9-Apr-2016.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛))))) ⇒ ⊢ (γ ∈ ((1 − (log‘2))[,]1) ∧ 𝐹:ℕ⟶(γ[,]1) ∧ 𝐺:ℕ⟶((1 − (log‘2))[,]γ)) | ||
| Theorem | emcl 26929 | Closure and bounds for the Euler-Mascheroni constant. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ γ ∈ ((1 − (log‘2))[,]1) | ||
| Theorem | harmonicbnd 26930* | A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 9-Apr-2016.) |
| ⊢ (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ∈ (γ[,]1)) | ||
| Theorem | harmonicbnd2 26931* | A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ ((1 − (log‘2))[,]γ)) | ||
| Theorem | emre 26932 | The Euler-Mascheroni constant is a real number. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ γ ∈ ℝ | ||
| Theorem | emgt0 26933 | The Euler-Mascheroni constant is positive. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ 0 < γ | ||
| Theorem | harmonicbnd3 26934* | A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ (𝑁 ∈ ℕ0 → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ (0[,]γ)) | ||
| Theorem | harmoniclbnd 26935* | A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ≤ Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚)) | ||
| Theorem | harmonicubnd 26936* | A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ≤ ((log‘𝐴) + 1)) | ||
| Theorem | harmonicbnd4 26937* | The asymptotic behavior of Σ𝑚 ≤ 𝐴, 1 / 𝑚 = log𝐴 + γ + 𝑂(1 / 𝐴). (Contributed by Mario Carneiro, 14-May-2016.) |
| ⊢ (𝐴 ∈ ℝ+ → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴)) | ||
| Theorem | fsumharmonic 26938* | Bound a finite sum based on the harmonic series, where the "strong" bound 𝐶 only applies asymptotically, and there is a "weak" bound 𝑅 for the remaining values. (Contributed by Mario Carneiro, 18-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → (𝑇 ∈ ℝ ∧ 1 ≤ 𝑇)) & ⊢ (𝜑 → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 0 ≤ 𝐶) & ⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑇 ≤ (𝐴 / 𝑛)) → (abs‘𝐵) ≤ (𝐶 · 𝑛)) & ⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝐴 / 𝑛) < 𝑇) → (abs‘𝐵) ≤ 𝑅) ⇒ ⊢ (𝜑 → (abs‘Σ𝑛 ∈ (1...(⌊‘𝐴))(𝐵 / 𝑛)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶 + (𝑅 · ((log‘𝑇) + 1)))) | ||
| Syntax | czeta 26939 | The Riemann zeta function. |
| class ζ | ||
| Definition | df-zeta 26940* | Define the Riemann zeta function. This definition uses a series expansion of the alternating zeta function ~? zetaalt that is convergent everywhere except 1, but going from the alternating zeta function to the regular zeta function requires dividing by 1 − 2↑(1 − 𝑠), which has zeroes other than 1. To extract the correct value of the zeta function at these points, we extend the divided alternating zeta function by continuity. (Contributed by Mario Carneiro, 18-Jul-2014.) |
| ⊢ ζ = (℩𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓‘𝑠)) = Σ𝑛 ∈ ℕ0 (Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))) | ||
| Theorem | zetacvg 26941* | The zeta series is convergent. (Contributed by Mario Carneiro, 18-Jul-2014.) |
| ⊢ (𝜑 → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 1 < (ℜ‘𝑆)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (𝑘↑𝑐-𝑆)) ⇒ ⊢ (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ ) | ||
| Syntax | clgam 26942 | Logarithm of the Gamma function. |
| class log Γ | ||
| Syntax | cgam 26943 | The Gamma function. |
| class Γ | ||
| Syntax | cigam 26944 | The inverse Gamma function. |
| class 1/Γ | ||
| Definition | df-lgam 26945* | Define the log-Gamma function. We can work with this form of the gamma function a bit easier than the equivalent expression for the gamma function itself, and moreover this function is not actually equal to log(Γ(𝑥)) because the branch cuts are placed differently (we do have exp(log Γ(𝑥)) = Γ(𝑥), though). This definition is attributed to Euler, and unlike the usual integral definition is defined on the entire complex plane except the nonpositive integers ℤ ∖ ℕ, where the function has simple poles. (Contributed by Mario Carneiro, 12-Jul-2014.) |
| ⊢ log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧))) | ||
| Definition | df-gam 26946 | Define the Gamma function. See df-lgam 26945 for more information about the reason for this definition in terms of the log-gamma function. (Contributed by Mario Carneiro, 12-Jul-2014.) |
| ⊢ Γ = (exp ∘ log Γ) | ||
| Definition | df-igam 26947 | Define the inverse Gamma function, which is defined everywhere, unlike the Gamma function itself. (Contributed by Mario Carneiro, 16-Jul-2017.) |
| ⊢ 1/Γ = (𝑥 ∈ ℂ ↦ if(𝑥 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝑥)))) | ||
| Theorem | eldmgm 26948 | Elementhood in the set of non-nonpositive integers. (Contributed by Mario Carneiro, 12-Jul-2014.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) | ||
| Theorem | dmgmaddn0 26949 | If 𝐴 is not a nonpositive integer, then 𝐴 + 𝑁 is nonzero for any nonnegative integer 𝑁. (Contributed by Mario Carneiro, 12-Jul-2014.) |
| ⊢ ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → (𝐴 + 𝑁) ≠ 0) | ||
| Theorem | dmlogdmgm 26950 | If 𝐴 is in the continuous domain of the logarithm, then it is in the domain of the Gamma function. (Contributed by Mario Carneiro, 8-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) | ||
| Theorem | rpdmgm 26951 | A positive real number is in the domain of the Gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) | ||
| Theorem | dmgmn0 26952 | If 𝐴 is not a nonpositive integer, then 𝐴 is nonzero. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → 𝐴 ≠ 0) | ||
| Theorem | dmgmaddnn0 26953 | If 𝐴 is not a nonpositive integer and 𝑁 is a nonnegative integer, then 𝐴 + 𝑁 is also not a nonpositive integer. (Contributed by Mario Carneiro, 6-Jul-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 + 𝑁) ∈ (ℂ ∖ (ℤ ∖ ℕ))) | ||
| Theorem | dmgmdivn0 26954 | Lemma for lgamf 26968. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝐴 / 𝑀) + 1) ≠ 0) | ||
| Theorem | lgamgulmlem1 26955* | Lemma for lgamgulm 26961. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} ⇒ ⊢ (𝜑 → 𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ))) | ||
| Theorem | lgamgulmlem2 26956* | Lemma for lgamgulm 26961. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → (2 · 𝑅) ≤ 𝑁) ⇒ ⊢ (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((1 / (𝑁 − 𝑅)) − (1 / 𝑁)))) | ||
| Theorem | lgamgulmlem3 26957* | Lemma for lgamgulm 26961. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → (2 · 𝑅) ≤ 𝑁) ⇒ ⊢ (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2)))) | ||
| Theorem | lgamgulmlem4 26958* | Lemma for lgamgulm 26961. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) & ⊢ 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) ⇒ ⊢ (𝜑 → seq1( + , 𝑇) ∈ dom ⇝ ) | ||
| Theorem | lgamgulmlem5 26959* | Lemma for lgamgulm 26961. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) & ⊢ 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) ⇒ ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈)) → (abs‘((𝐺‘𝑛)‘𝑦)) ≤ (𝑇‘𝑛)) | ||
| Theorem | lgamgulmlem6 26960* | The series 𝐺 is uniformly convergent on the compact region 𝑈, which describes a circle of radius 𝑅 with holes of size 1 / 𝑅 around the poles of the gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) & ⊢ 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) ⇒ ⊢ (𝜑 → (seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢‘𝑈) ∧ (seq1( ∘f + , 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ 𝑂) → ∃𝑟 ∈ ℝ ∀𝑧 ∈ 𝑈 (abs‘𝑂) ≤ 𝑟))) | ||
| Theorem | lgamgulm 26961* | The series 𝐺 is uniformly convergent on the compact region 𝑈, which describes a circle of radius 𝑅 with holes of size 1 / 𝑅 around the poles of the gamma function. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ⇒ ⊢ (𝜑 → seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢‘𝑈)) | ||
| Theorem | lgamgulm2 26962* | Rewrite the limit of the sequence 𝐺 in terms of the log-Gamma function. (Contributed by Mario Carneiro, 6-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ⇒ ⊢ (𝜑 → (∀𝑧 ∈ 𝑈 (log Γ‘𝑧) ∈ ℂ ∧ seq1( ∘f + , 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))) | ||
| Theorem | lgambdd 26963* | The log-Gamma function is bounded on the region 𝑈. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℝ ∀𝑧 ∈ 𝑈 (abs‘(log Γ‘𝑧)) ≤ 𝑟) | ||
| Theorem | lgamucov 26964* | The 𝑈 regions used in the proof of lgamgulm 26961 have interiors which cover the entire domain of the Gamma function. (Contributed by Mario Carneiro, 6-Jul-2017.) |
| ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) & ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℕ 𝐴 ∈ ((int‘𝐽)‘𝑈)) | ||
| Theorem | lgamucov2 26965* | The 𝑈 regions used in the proof of lgamgulm 26961 have interiors which cover the entire domain of the Gamma function. (Contributed by Mario Carneiro, 8-Jul-2017.) |
| ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℕ 𝐴 ∈ 𝑈) | ||
| Theorem | lgamcvglem 26966* | Lemma for lgamf 26968 and lgamcvg 26980. (Contributed by Mario Carneiro, 8-Jul-2017.) |
| ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) ⇒ ⊢ (𝜑 → ((log Γ‘𝐴) ∈ ℂ ∧ seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴)))) | ||
| Theorem | lgamcl 26967 | The log-Gamma function is a complex function defined on the whole complex plane except for the negative integers. (Contributed by Mario Carneiro, 8-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘𝐴) ∈ ℂ) | ||
| Theorem | lgamf 26968 | The log-Gamma function is a complex function defined on the whole complex plane except for the negative integers. (Contributed by Mario Carneiro, 6-Jul-2017.) |
| ⊢ log Γ:(ℂ ∖ (ℤ ∖ ℕ))⟶ℂ | ||
| Theorem | gamf 26969 | The Gamma function is a complex function defined on the whole complex plane except for the negative integers. (Contributed by Mario Carneiro, 6-Jul-2017.) |
| ⊢ Γ:(ℂ ∖ (ℤ ∖ ℕ))⟶ℂ | ||
| Theorem | gamcl 26970 | The exponential of the log-Gamma function is the Gamma function (by definition). (Contributed by Mario Carneiro, 8-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (Γ‘𝐴) ∈ ℂ) | ||
| Theorem | eflgam 26971 | The exponential of the log-Gamma function is the Gamma function (by definition). (Contributed by Mario Carneiro, 8-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴)) | ||
| Theorem | gamne0 26972 | The Gamma function is never zero. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (Γ‘𝐴) ≠ 0) | ||
| Theorem | igamval 26973 | Value of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.) |
| ⊢ (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴)))) | ||
| Theorem | igamz 26974 | Value of the inverse Gamma function on nonpositive integers. (Contributed by Mario Carneiro, 16-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℤ ∖ ℕ) → (1/Γ‘𝐴) = 0) | ||
| Theorem | igamgam 26975 | Value of the inverse Gamma function in terms of the Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (1/Γ‘𝐴) = (1 / (Γ‘𝐴))) | ||
| Theorem | igamlgam 26976 | Value of the inverse Gamma function in terms of the log-Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (1/Γ‘𝐴) = (exp‘-(log Γ‘𝐴))) | ||
| Theorem | igamf 26977 | Closure of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.) |
| ⊢ 1/Γ:ℂ⟶ℂ | ||
| Theorem | igamcl 26978 | Closure of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.) |
| ⊢ (𝐴 ∈ ℂ → (1/Γ‘𝐴) ∈ ℂ) | ||
| Theorem | gamigam 26979 | The Gamma function is the inverse of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (Γ‘𝐴) = (1 / (1/Γ‘𝐴))) | ||
| Theorem | lgamcvg 26980* | The series 𝐺 converges to log Γ(𝐴) + log(𝐴). (Contributed by Mario Carneiro, 6-Jul-2017.) |
| ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴))) | ||
| Theorem | lgamcvg2 26981* | The series 𝐺 converges to log Γ(𝐴 + 1). (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → seq1( + , 𝐺) ⇝ (log Γ‘(𝐴 + 1))) | ||
| Theorem | gamcvg 26982* | The pointwise exponential of the series 𝐺 converges to Γ(𝐴) · 𝐴. (Contributed by Mario Carneiro, 6-Jul-2017.) |
| ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ ((Γ‘𝐴) · 𝐴)) | ||
| Theorem | lgamp1 26983 | The functional equation of the (log) Gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘(𝐴 + 1)) = ((log Γ‘𝐴) + (log‘𝐴))) | ||
| Theorem | gamp1 26984 | The functional equation of the Gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (Γ‘(𝐴 + 1)) = ((Γ‘𝐴) · 𝐴)) | ||
| Theorem | gamcvg2lem 26985* | Lemma for gamcvg2 26986. (Contributed by Mario Carneiro, 10-Jul-2017.) |
| ⊢ 𝐹 = (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1))) & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) ⇒ ⊢ (𝜑 → (exp ∘ seq1( + , 𝐺)) = seq1( · , 𝐹)) | ||
| Theorem | gamcvg2 26986* | An infinite product expression for the gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ 𝐹 = (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1))) & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → seq1( · , 𝐹) ⇝ ((Γ‘𝐴) · 𝐴)) | ||
| Theorem | regamcl 26987 | The Gamma function is real for real input. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) → (Γ‘𝐴) ∈ ℝ) | ||
| Theorem | relgamcl 26988 | The log-Gamma function is real for positive real input. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (𝐴 ∈ ℝ+ → (log Γ‘𝐴) ∈ ℝ) | ||
| Theorem | rpgamcl 26989 | The log-Gamma function is positive real for positive real input. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (𝐴 ∈ ℝ+ → (Γ‘𝐴) ∈ ℝ+) | ||
| Theorem | lgam1 26990 | The log-Gamma function at one. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (log Γ‘1) = 0 | ||
| Theorem | gam1 26991 | The log-Gamma function at one. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (Γ‘1) = 1 | ||
| Theorem | facgam 26992 | The Gamma function generalizes the factorial. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) = (Γ‘(𝑁 + 1))) | ||
| Theorem | gamfac 26993 | The Gamma function generalizes the factorial. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ (𝑁 ∈ ℕ → (Γ‘𝑁) = (!‘(𝑁 − 1))) | ||
| Theorem | wilthlem1 26994 | The only elements that are equal to their own inverses in the multiplicative group of nonzero elements in ℤ / 𝑃ℤ are 1 and -1≡𝑃 − 1. (Note that from prmdiveq 16715, (𝑁↑(𝑃 − 2)) mod 𝑃 is the modular inverse of 𝑁 in ℤ / 𝑃ℤ. (Contributed by Mario Carneiro, 24-Jan-2015.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃) ↔ (𝑁 = 1 ∨ 𝑁 = (𝑃 − 1)))) | ||
| Theorem | wilthlem2 26995* |
Lemma for wilth 26997: induction step. The "hand proof"
version of this
theorem works by writing out the list of all numbers from 1 to
𝑃
− 1 in pairs such that a number is paired with its inverse.
Every number has a unique inverse different from itself except 1
and 𝑃 − 1, and so each pair
multiplies to 1, and 1 and
𝑃
− 1≡-1 multiply to -1, so the full
product is equal
to -1. Here we make this precise by doing the
product pair by
pair.
The induction hypothesis says that every subset 𝑆 of 1...(𝑃 − 1) that is closed under inverse (i.e. all pairs are matched up) and contains 𝑃 − 1 multiplies to -1 mod 𝑃. Given such a set, we take out one element 𝑧 ≠ 𝑃 − 1. If there are no such elements, then 𝑆 = {𝑃 − 1} which forms the base case. Otherwise, 𝑆 ∖ {𝑧, 𝑧↑-1} is also closed under inverse and contains 𝑃 − 1, so the induction hypothesis says that this equals -1; and the remaining two elements are either equal to each other, in which case wilthlem1 26994 gives that 𝑧 = 1 or 𝑃 − 1, and we've already excluded the second case, so the product gives 1; or 𝑧 ≠ 𝑧↑-1 and their product is 1. In either case the accumulated product is unaffected. (Contributed by Mario Carneiro, 24-Jan-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| ⊢ 𝑇 = (mulGrp‘ℂfld) & ⊢ 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)} & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑆 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝐴 (𝑠 ⊊ 𝑆 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃))) ⇒ ⊢ (𝜑 → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃)) | ||
| Theorem | wilthlem3 26996* | Lemma for wilth 26997. Here we round out the argument of wilthlem2 26995 with the final step of the induction. The induction argument shows that every subset of 1...(𝑃 − 1) that is closed under inverse and contains 𝑃 − 1 multiplies to -1 mod 𝑃, and clearly 1...(𝑃 − 1) itself is such a set. Thus, the product of all the elements is -1, and all that is left is to translate the group sum notation (which we used for its unordered summing capabilities) into an ordered sequence to match the definition of the factorial. (Contributed by Mario Carneiro, 24-Jan-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| ⊢ 𝑇 = (mulGrp‘ℂfld) & ⊢ 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)} ⇒ ⊢ (𝑃 ∈ ℙ → 𝑃 ∥ ((!‘(𝑃 − 1)) + 1)) | ||
| Theorem | wilth 26997 | Wilson's theorem. A number is prime iff it is greater than or equal to 2 and (𝑁 − 1)! is congruent to -1, mod 𝑁, or alternatively if 𝑁 divides (𝑁 − 1)! + 1. In this part of the proof we show the relatively simple reverse implication; see wilthlem3 26996 for the forward implication. This is Metamath 100 proof #51. (Contributed by Mario Carneiro, 24-Jan-2015.) (Proof shortened by Fan Zheng, 16-Jun-2016.) |
| ⊢ (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ∥ ((!‘(𝑁 − 1)) + 1))) | ||
| Theorem | wilthimp 26998 | The forward implication of Wilson's theorem wilth 26997 (see wilthlem3 26996), expressed using the modulo operation: For any prime 𝑝 we have (𝑝 − 1)!≡ − 1 (mod 𝑝), see theorem 5.24 in [ApostolNT] p. 116. (Contributed by AV, 21-Jul-2021.) |
| ⊢ (𝑃 ∈ ℙ → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)) | ||
| Theorem | ftalem1 26999* | Lemma for fta 27006: "growth lemma". There exists some 𝑟 such that 𝐹 is arbitrarily close in proportion to its dominant term. (Contributed by Mario Carneiro, 14-Sep-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ 𝑇 = (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) / 𝐸) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))) | ||
| Theorem | ftalem2 27000* | Lemma for fta 27006. There exists some 𝑟 such that 𝐹 has magnitude greater than 𝐹(0) outside the closed ball B(0,r). (Contributed by Mario Carneiro, 14-Sep-2014.) |
| ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑈 = if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)) & ⊢ 𝑇 = ((abs‘(𝐹‘0)) / ((abs‘(𝐴‘𝑁)) / 2)) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℝ+ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑥)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |