![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > areaf | Structured version Visualization version GIF version |
Description: Area measurement is a function whose values are nonnegative reals. (Contributed by Mario Carneiro, 21-Jun-2015.) |
Ref | Expression |
---|---|
areaf | β’ area:dom areaβΆ(0[,)+β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfarea 26806 | . 2 β’ area = (π β dom area β¦ β«β(volβ(π β {π₯})) dπ₯) | |
2 | areambl 26804 | . . . . 5 β’ ((π β dom area β§ π₯ β β) β ((π β {π₯}) β dom vol β§ (volβ(π β {π₯})) β β)) | |
3 | 2 | simprd 495 | . . . 4 β’ ((π β dom area β§ π₯ β β) β (volβ(π β {π₯})) β β) |
4 | dmarea 26803 | . . . . 5 β’ (π β dom area β (π β (β Γ β) β§ βπ₯ β β (π β {π₯}) β (β‘vol β β) β§ (π₯ β β β¦ (volβ(π β {π₯}))) β πΏ1)) | |
5 | 4 | simp3bi 1146 | . . . 4 β’ (π β dom area β (π₯ β β β¦ (volβ(π β {π₯}))) β πΏ1) |
6 | 3, 5 | itgrecl 25647 | . . 3 β’ (π β dom area β β«β(volβ(π β {π₯})) dπ₯ β β) |
7 | 2 | simpld 494 | . . . . . 6 β’ ((π β dom area β§ π₯ β β) β (π β {π₯}) β dom vol) |
8 | mblss 25380 | . . . . . 6 β’ ((π β {π₯}) β dom vol β (π β {π₯}) β β) | |
9 | ovolge0 25330 | . . . . . 6 β’ ((π β {π₯}) β β β 0 β€ (vol*β(π β {π₯}))) | |
10 | 7, 8, 9 | 3syl 18 | . . . . 5 β’ ((π β dom area β§ π₯ β β) β 0 β€ (vol*β(π β {π₯}))) |
11 | mblvol 25379 | . . . . . 6 β’ ((π β {π₯}) β dom vol β (volβ(π β {π₯})) = (vol*β(π β {π₯}))) | |
12 | 7, 11 | syl 17 | . . . . 5 β’ ((π β dom area β§ π₯ β β) β (volβ(π β {π₯})) = (vol*β(π β {π₯}))) |
13 | 10, 12 | breqtrrd 5176 | . . . 4 β’ ((π β dom area β§ π₯ β β) β 0 β€ (volβ(π β {π₯}))) |
14 | 5, 3, 13 | itgge0 25660 | . . 3 β’ (π β dom area β 0 β€ β«β(volβ(π β {π₯})) dπ₯) |
15 | elrege0 13438 | . . 3 β’ (β«β(volβ(π β {π₯})) dπ₯ β (0[,)+β) β (β«β(volβ(π β {π₯})) dπ₯ β β β§ 0 β€ β«β(volβ(π β {π₯})) dπ₯)) | |
16 | 6, 14, 15 | sylanbrc 582 | . 2 β’ (π β dom area β β«β(volβ(π β {π₯})) dπ₯ β (0[,)+β)) |
17 | 1, 16 | fmpti 7113 | 1 β’ area:dom areaβΆ(0[,)+β) |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 395 = wceq 1540 β wcel 2105 βwral 3060 β wss 3948 {csn 4628 class class class wbr 5148 β¦ cmpt 5231 Γ cxp 5674 β‘ccnv 5675 dom cdm 5676 β cima 5679 βΆwf 6539 βcfv 6543 (class class class)co 7412 βcr 11115 0cc0 11116 +βcpnf 11252 β€ cle 11256 [,)cico 13333 vol*covol 25311 volcvol 25312 πΏ1cibl 25466 β«citg 25467 areacarea 26801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-ofr 7675 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-er 8709 df-map 8828 df-pm 8829 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-inf 9444 df-oi 9511 df-dju 9902 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-n0 12480 df-z 12566 df-uz 12830 df-q 12940 df-rp 12982 df-xadd 13100 df-ioo 13335 df-ico 13337 df-icc 13338 df-fz 13492 df-fzo 13635 df-fl 13764 df-mod 13842 df-seq 13974 df-exp 14035 df-hash 14298 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-clim 15439 df-sum 15640 df-xmet 21226 df-met 21227 df-ovol 25313 df-vol 25314 df-mbf 25468 df-itg1 25469 df-itg2 25470 df-ibl 25471 df-itg 25472 df-0p 25519 df-area 26802 |
This theorem is referenced by: areacl 26808 areage0 26809 |
Copyright terms: Public domain | W3C validator |